Can you trust your model's uncertainty? evaluating predictive uncertainty under dataset shift Y Ovadia, E Fertig, J Ren, Z Nado, D Sculley, S Nowozin, J Dillon, ...
Advances in neural information processing systems 32, 2019
1978 2019 Likelihood ratios for out-of-distribution detection J Ren, PJ Liu, E Fertig, J Snoek, R Poplin, M Depristo, J Dillon, ...
Advances in neural information processing systems 32, 2019
827 2019 The variability of interconnected wind plants W Katzenstein, E Fertig, J Apt
Energy policy 38 (8), 4400-4410, 2010
282 2010 Economics of compressed air energy storage to integrate wind power: A case study in ERCOT E Fertig, J Apt
Energy Policy 39 (5), 2330-2342, 2011
225 2011 The effect of long-distance interconnection on wind power variability E Fertig, J Apt, P Jaramillo, W Katzenstein
Environmental research letters 7 (3), 034017, 2012
87 2012 Can you trust your model’s uncertainty Y Ovadia, E Fertig, J Ren, Z Nado, D Sculley, S Nowozin, JV Dillon, ...
Evaluating predictive uncertainty under dataset shift, 2019
77 2019 Automatic structured variational inference L Ambrogioni, K Lin, E Fertig, S Vikram, M Hinne, D Moore, M van Gerven
International Conference on Artificial Intelligence and Statistics, 676-684, 2021
33 2021 Optimal investment timing and capacity choice for pumped hydropower storage E Fertig, AM Heggedal, G Doorman, J Apt
Energy Systems 5, 285-306, 2014
29 2014 Rare breakthroughs vs. incremental development in R&D strategy for an early-stage energy technology E Fertig
Energy Policy 123, 711-721, 2018
11 2018 Simulating sub-hourly variability of wind power output E Fertig
Wind Energy (in press), 2019
10 2019 Smart integration of variable and intermittent renewables J Apt, E Fertig, W Katzenstein
2012 45th Hawaii International Conference on System Sciences, 1997-2001, 2012
8 2012 Dueling decoders: Regularizing variational autoencoder latent spaces B Seybold, E Fertig, A Alemi, I Fischer
arXiv preprint arXiv:1905.07478, 2019
6 2019 Embedded-model flows: Combining the inductive biases of model-free deep learning and explicit probabilistic modeling G Silvestri, E Fertig, D Moore, L Ambrogioni
arXiv preprint arXiv:2110.06021, 2021
5 2021 -VAEs can retain label information even at high compressionE Fertig, A Arbabi, AA Alemi
arXiv preprint arXiv:1812.02682, 2018
5 2018 Facilitating the development and integration of low-carbon energy technologies E Fertig
Carnegie Mellon University, 2013
2 2013 PROTOLITH AND TECTONIC SETTING OF QUARTZOFELDSPATHIC GNEISSES OF THE HIGHLAND MOUNTAINS, GREENHORN RANGE AND ALDER GULCH; SOUTHWEST MONTANA E Fertig, C Siddoway, TA Harms
2 2006 Likelihood Ratios for Out-of-Distribution Detection J Ren, B Lakshminarayanan, PJ Liu, JV Dillon, RJ Snoek, R Poplin, ...
US Patent App. 17/616,494, 2022
1 2022 Optimal Investment Strategy in Low-Carbon Energy R&D with Uncertain Payoff E Fertig, J Apt
Transition to a Sustainable Energy Era: Opportunities & Challenges,,, 2012
1 2012 The Role of Energy Storage in Renewable Power Integration E Fertig, S Wagner
Integration and Policy Workshop for RenewElec Project. Carnegie Mellon …, 2010
1 2010 Dynamic programming vs. robust optimization for managing a system with an uncertain threshold response E Fertig, M Webster
2015