On the empirical time complexity of random 3-SAT at the phase transition Z Mu, HH Hoos Twenty-Fourth International Joint Conference on Artificial Intelligence, 2015 | 19 | 2015 |
On the empirical scaling of running time for finding optimal solutions to the TSP Z Mu, J Dubois-Lacoste, HH Hoos, T Stützle Journal of Heuristics 24 (6), 879-898, 2018 | 15 | 2018 |
The Impact of Automated Algorithm Configuration on the Scaling Behaviour of State-of-the-Art Inexact TSP Solvers Z Mu, HH Hoos, T Stützle International Conference on Learning and Intelligent Optimization, 157-172, 2016 | 9 | 2016 |
Empirical Scaling Analyser: An Automated System for Empirical Analysis of Performance Scaling Z Mu, HH Hoos Proceedings of the Companion Publication of the 2015 Annual Conference on …, 2015 | 6 | 2015 |
Analysing the empirical time complexity of high-performance algorithms for SAT and TSP Z Mu University of British Columbia, 2015 | 6 | 2015 |
DVS scheduling in a line or a star network of processors Z Mu, M Li Journal of Combinatorial Optimization 29 (1), 16-35, 2015 | 4 | 2015 |
Empirical scaling analyzer: An automated system for empirical analysis of performance scaling Y Pushak, Z Mu, HH Hoos AI Communications 33 (2), 93-111, 2020 | 3 | 2020 |
User Guide ESA v1. Z Mu, Y Pushak | | 2017 |
Computing the maximum similarity tri-clusters of gene expression data Z Mu | | 2013 |