Obserwuj
Karthik Valmeekam
Tytuł
Cytowane przez
Cytowane przez
Rok
Large Language Models Still Can't Plan (A Benchmark for LLMs on Planning and Reasoning about Change)
K Valmeekam, A Olmo, S Sreedharan, S Kambhampati
arXiv preprint arXiv:2206.10498, 2022
3522022
On the Planning Abilities of Large Language Models--A Critical Investigation
K Valmeekam, M Marquez, S Sreedharan, S Kambhampati
Thirty-seventh Conference on Neural Information Processing Systems, 2023
2512023
Leveraging Pre-trained Large Language Models to Construct and Utilize World Models for Model-based Task Planning
L Guan, K Valmeekam, S Sreedharan, S Kambhampati
Thirty-seventh Conference on Neural Information Processing Systems, 2023
1802023
PlanBench: An Extensible Benchmark for Evaluating Large Language Models on Planning and Reasoning about Change
K Valmeekam, M Marquez, A Olmo, S Sreedharan, S Kambhampati
Thirty-seventh Conference on Neural Information Processing Systems Datasets …, 2023
1682023
Position: LLMs can’t plan, but can help planning in LLM-modulo frameworks
S Kambhampati, K Valmeekam, L Guan, M Verma, K Stechly, S Bhambri, ...
Forty-first International Conference on Machine Learning, 2024
1622024
On the planning abilities of large language models (a critical investigation with a proposed benchmark)
K Valmeekam, S Sreedharan, M Marquez, A Olmo, S Kambhampati
arXiv preprint arXiv:2302.06706, 2023
812023
Can large language models really improve by self-critiquing their own plans?
K Valmeekam, M Marquez, S Kambhampati
arXiv preprint arXiv:2310.08118, 2023
732023
On the self-verification limitations of large language models on reasoning and planning tasks
K Stechly, K Valmeekam, S Kambhampati
arXiv preprint arXiv:2402.08115, 2024
492024
Chain of thoughtlessness? an analysis of cot in planning
K Stechly, K Valmeekam, S Kambhampati
The Thirty-eighth Annual Conference on Neural Information Processing Systems, 2024
352024
Robust Planning with Compound LLM Architectures: An LLM-Modulo Approach
A Gundawar, K Valmeekam, M Verma, S Kambhampati
arXiv preprint arXiv:2411.14484, 2024
26*2024
LLMs Still Can't Plan; Can LRMs? A Preliminary Evaluation of OpenAI's o1 on PlanBench
K Valmeekam, K Stechly, S Kambhampati
arXiv preprint arXiv:2409.13373, 2024
262024
Opinion Mining on Emojis using Deep Learning Techniques
V Karthik, D Nair, J Anuradha
Procedia Computer Science 132, 167-173, 2018
212018
Relative Behavioral Attributes: Filling the Gap between Symbolic Goal Specification and Reward Learning from Human Preferences
L Guan, K Valmeekam, S Kambhampati
The Eleventh International Conference on Learning Representations, 2022
132022
RADAR-X: An interactive interface pairing contrastive explanations with revised plan suggestions
V Karthik, S Sreedharan, S Sengupta, S Kambhampati
Proceedings of the AAAI Conference on Artificial Intelligence 35 (18), 16051 …, 2021
132021
RADAR-X: An Interactive Mixed Initiative Planning Interface Pairing Contrastive Explanations and Revised Plan Suggestions
K Valmeekam, S Sreedharan, S Sengupta, S Kambhampati
Proceedings of the International Conference on Automated Planning and …, 2022
112022
Planning in Strawberry Fields: Evaluating and Improving the Planning and Scheduling Capabilities of LRM o1
K Valmeekam, K Stechly, A Gundawar, S Kambhampati
arXiv preprint arXiv:2410.02162, 2024
92024
On the role of large language models in planning, July 2023. Tutorial presented at the International Conference on Automated Planning and Scheduling (ICAPS), Prague
S Kambhampati, K Valmeekam, M Marquez, L Guan
32023
A Study of Explainable Decision Support for Longitudinal Sequential Decision Making
K Valmeekam
Arizona State University, 2021
2021
LLM-Modulo Frameworks as Compound AI Architectures for Robust Planning
S Kambhampati, K Valmeekam, L Guan, M Verma, SBKSL Saldyt, ...
Nie można teraz wykonać tej operacji. Spróbuj ponownie później.
Prace 1–19