Obserwuj
Jordan Boyd-Graber
Tytuł
Cytowane przez
Cytowane przez
Rok
Reading tea leaves: How humans interpret topic models
J Chang, J Boyd-Graber, S Gerrish, C Wang, DM Blei
Neural Information Processing Systems (NIPS) 31, 2009
35422009
Deep unordered composition rivals syntactic methods for text classification
M Iyyer, V Manjunatha, J Boyd-Graber, H Daumé III
Proceedings of the 53rd annual meeting of the association for computational …, 2015
11442015
Interactive topic modeling
Y Hu, J Boyd-Graber, B Satinoff, A Smith
Machine learning 95, 423-469, 2014
5092014
A neural network for factoid question answering over paragraphs
M Iyyer, J Boyd-Graber, L Claudino, R Socher, H Daumé III
Proceedings of the 2014 conference on empirical methods in natural language …, 2014
4682014
Opponent modeling in deep reinforcement learning
H He, J Boyd-Graber, K Kwok, H Daumé III
International conference on machine learning, 1804-1813, 2016
4132016
Political ideology detection using recursive neural networks
M Iyyer, P Enns, J Boyd-Graber, P Resnik
Proceedings of the 52nd annual meeting of the Association for Computational …, 2014
4122014
Applications of topic models
J Boyd-Graber, Y Hu, D Mimno
Foundations and Trends® in Information Retrieval 11 (2-3), 143-296, 2017
4032017
Pathologies of neural models make interpretations difficult
S Feng, E Wallace, A Grissom II, M Iyyer, P Rodriguez, J Boyd-Graber
arXiv preprint arXiv:1804.07781, 2018
3832018
A topic model for word sense disambiguation
J Boyd-Graber, D Blei, X Zhu
Conference on Empirical Methods in Natural Language Processing (EMNLP), 1024 …, 2007
3412007
Beyond LDA: exploring supervised topic modeling for depression-related language in Twitter
P Resnik, W Armstrong, L Claudino, T Nguyen, VA Nguyen, ...
Proceedings of the 2nd workshop on computational linguistics and clinical …, 2015
2982015
Syntactic topic models
J Boyd-Graber, DM Blei
Neural Information Processing Systems (NIPS), 2008
2872008
Care and feeding of topic models: Problems, diagnostics, and improvements
J Boyd-Graber, D Mimno, D Newman
Handbook of mixed membership models and their applications 225255, 2014
2862014
Prompting gpt-3 to be reliable
C Si, Z Gan, Z Yang, S Wang, J Wang, J Boyd-Graber, L Wang
arXiv preprint arXiv:2210.09150, 2022
2682022
Can you unpack that? learning to rewrite questions-in-context
A Elgohary, D Peskov, J Boyd-Graber
Can You Unpack That? Learning to Rewrite Questions-in-Context, 2019
2462019
Multilingual topic models for unaligned text
J Boyd-Graber, D Blei
arXiv preprint arXiv:1205.2657, 2012
2262012
Cold-start active learning through self-supervised language modeling
M Yuan, HT Lin, J Boyd-Graber
arXiv preprint arXiv:2010.09535, 2020
2142020
Mr. LDA: A flexible large scale topic modeling package using variational inference in mapreduce
K Zhai, J Boyd-Graber, N Asadi, ML Alkhouja
Proceedings of the 21st international conference on World Wide Web, 879-888, 2012
2022012
Adding dense, weighted connections to WordNet
J Boyd-Graber, C Fellbaum, D Osherson, R Schapire
Proceedings of the third international WordNet conference, 29-36, 2006
1992006
Climate-fever: A dataset for verification of real-world climate claims
T Diggelmann, J Boyd-Graber, J Bulian, M Ciaramita, M Leippold
arXiv preprint arXiv:2012.00614, 2020
1842020
Feuding Families and Former Friends: Unsupervised Learning for Dynamic Fictional Relationships
M Iyyer, A Guha, S Chaturvedi, J Boyd-Graber, H Daumé III
1822016
Nie można teraz wykonać tej operacji. Spróbuj ponownie później.
Prace 1–20