Obserwuj
Mohamad H. Danesh
Tytuł
Cytowane przez
Cytowane przez
Rok
Re-understanding Finite-State Representations of Recurrent Policy Networks
MH Danesh, A Koul, A Fern, S Khorram
International Conference on Machine Learning, 2388-2397, 2021
252021
Out-of-Distribution Dynamics Detection: RL-Relevant Benchmarks and Results
MH Danesh, A Fern
ICML 2021 Workshop on Uncertainty and Robustness in Deep Learning, 2021
172021
LEADER: Learning Attention over Driving Behaviors for Planning under Uncertainty
MH Danesh, P Cai, D Hsu
https://arxiv.org/abs/2209.11422, 2022
112022
Open RL Benchmark: Comprehensive Tracked Experiments for Reinforcement Learning
S Huang, Q Gallouédec, F Felten, A Raffin, RFJ Dossa, Y Zhao, ...
arXiv preprint arXiv:2402.03046, 2024
92024
Stochastic block-admm for training deep networks
S Khorram, X Fu, MH Danesh, Z Qi, L Fuxin
arXiv preprint arXiv:2105.00339, 2021
32021
Learning finite state representations of recurrent policy networks
MH Danesh, A Koul, A Fern, S Khorram
Intl. Conference on Learning Representaitons, 2019
22019
Getting By Goal Misgeneralization With a Little Help From a Mentor
T Trinh, MH Danesh, NX Khanh, B Plaut
arXiv preprint arXiv:2410.21052, 2024
12024
Taming the Tail in Class-Conditional GANs: Knowledge Sharing via Unconditional Training at Lower Resolutions
S Khorram, M Jiang, M Shahbazi, MH Danesh, L Fuxin
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern …, 2024
12024
Enhancing Transfer of Reinforcement Learning Agents with Abstract Contextual Embeddings
G Azran, MH Danesh, SV Albrecht, S Keren
NeurIPS 2022 Workshop on Neuro Causal and Symbolic AI (nCSI), 2022
12022
Learning to Coordinate with Experts
MH Danesh, T Trinh, B Plaut, NX Khanh
arXiv preprint arXiv:2502.09583, 2025
2025
Contextual pre-planning on reward machine abstractions for enhanced transfer in deep reinforcement learning
G Azran, MH Danesh, SV Albrecht, S Keren
Proceedings of the AAAI Conference on Artificial Intelligence 38 (10), 10953 …, 2024
2024
Open RL Benchmark: Comprehensive Tracked Experiments for Reinforcement Learning
S Huang, Q Gallouédec, F Felten, A Raffin, RFJ Dossa, Y Zhao, ...
https://github.com/openrlbenchmark/openrlbenchmark, 2024
2024
Reducing Neural Network Parameter Initialization Into an SMT Problem (Student Abstract)
MH Danesh
Proceedings of the AAAI Conference on Artificial Intelligence 35 (18), 15775 …, 2021
2021
Autonomous Agents Research Group
S Albrecht, F Christianos, L Schäfer, T McInroe, M Dunion, A Jelley, ...
2020
Tracking Moving Objects in Multi-Camera Environments using Appearance Features
MH Danesh, M Hasheminejad, A Nickabadi
2018 International Computer Conference (CSICC), 2018
2018
Mitigating Distribution Shifts: Uncertainty-Aware Offline-to-Online Reinforcement Learning
MH Danesh, M Wabartha, J Pineau, HC Lin
Automatic Environment Generation to Generalize Agents
MH Danesh
Nie można teraz wykonać tej operacji. Spróbuj ponownie później.
Prace 1–17