Artykuły udostępnione publicznie: - Zening FuWięcej informacji
Niedostępne w żadnym miejscu: 20
Multimodal data fusion of deep learning and dynamic functional connectivity features to predict Alzheimer’s disease progression
A Abrol, Z Fu, Y Du, VD Calhoun
2019 41st annual international conference of the IEEE engineering in …, 2019
Upoważnienia: US National Science Foundation, US National Institutes of Health, National …
Multi-modal deep learning of functional and structural neuroimaging and genomic data to predict mental illness
MA Rahaman, J Chen, Z Fu, N Lewis, A Iraji, VD Calhoun
2021 43rd annual international conference of the IEEE Engineering in …, 2021
Upoważnienia: US National Institutes of Health
A novel and effective fMRI decoding approach based on sliced inverse regression and its application to pain prediction
YH Tu, ZN Fu, A Tan, G Huang, L Hu, YS Hung, ZG Zhang
Neurocomputing 273, 373-384, 2018
Upoważnienia: National Natural Science Foundation of China, Research Grants Council, Hong Kong
Fusion analysis of gray matter and white matter in bipolar disorder by multimodal CCA-joint ICA
F Tang, H Yang, L Li, E Ji, Z Fu, Z Zhang
Journal of affective disorders 263, 80-88, 2020
Upoważnienia: National Natural Science Foundation of China
A deep generative multimodal imaging genomics framework for Alzheimer's disease prediction
G Dolci, MA Rahaman, J Chen, K Duan, Z Fu, A Abrol, G Menegaz, ...
2022 IEEE 22nd International Conference on Bioinformatics and Bioengineering …, 2022
Upoważnienia: US National Science Foundation, US National Institutes of Health
Supervised nonlinear dimension reduction of functional magnetic resonance imaging data using Sliced Inverse Regression
Y Tu, A Tan, Z Fu, YS Hung, L Hu, Z Zhang
2015 37th Annual International Conference of the IEEE Engineering in …, 2015
Upoważnienia: Research Grants Council, Hong Kong
Two-dimensional attentive fusion for multi-modal learning of neuroimaging and genomics data
MA Rahaman, Y Garg, A Iraji, Z Fu, J Chen, V Calhoun
2022 IEEE 32nd international workshop on machine learning for signal …, 2022
Upoważnienia: US National Institutes of Health
Stability of functional network connectivity (FNC) values across multiple spatial normalization pipelines in spatially constrained independent component analysis
T DeRamus, A Iraji, Z Fu, R Silva, J Stephen, TW Wilson, YP Wang, Y Du, ...
2021 IEEE 21st International Conference on Bioinformatics and Bioengineering …, 2021
Upoważnienia: US National Science Foundation, US National Institutes of Health
Deep learning prediction and visualization of gender related brain changes from longitudinal structural mri data in the abcd study
Y Bi, A Abrol, Z Fu, V Calhoun
2022 44th Annual International Conference of the IEEE Engineering in …, 2022
Upoważnienia: US National Science Foundation
L0-regularized time-varying sparse inverse covariance estimation for tracking dynamic fMRI brain networks
Z Fu, S Han, A Tan, Y Tu, Z Zhang
2015 37th Annual International Conference of the IEEE Engineering in …, 2015
Upoważnienia: Research Grants Council, Hong Kong
Deep generative transfer learning predicts conversion to alzheimer’s disease from neuroimaging genomics data
G Dolci, MA Rahaman, IB Galazzo, F Cruciani, A Abrol, J Chen, Z Fu, ...
2023 IEEE International Conference on Acoustics, Speech, and Signal …, 2023
Upoważnienia: US National Science Foundation, US National Institutes of Health
Time-varying graphs: A method to identify abnormal integration and disconnection in functional brain connectivity with application to schizophrenia
H Falakshahi, H Rokham, Z Fu, DH Mathalon, JM Ford, J Voyvodic, ...
2020 IEEE 20th international conference on bioinformatics and bioengineering …, 2020
Upoważnienia: US National Science Foundation, US National Institutes of Health
Multimodal neuroimaging patterns associated with social responsiveness impairment in autism: A replication study
T Li, Z Fu, X Liu, S Qi, VD Calhoun, J Sui
2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019 …, 2019
Upoważnienia: Chinese Academy of Sciences, National Natural Science Foundation of China
Identifying psychosis subtypes use individualized covariance structural differential networks and multi-site clustering
Y Ji, G Pearlson, J Bustillo, P Kochunov, JA Turner, R Jiang, W Shao, ...
Schizophrenia Research 264, 130-139, 2024
Upoważnienia: US National Institutes of Health, National Natural Science Foundation of China
Accessing dynamic functional connectivity using l0-regularized sparse-smooth inverse covariance estimation from fMRI
L Zhang, Z Fu, W Zhang, G Huang, Z Liang, L Li, BB Biswal, VD Calhoun, ...
Neurocomputing 443, 147-161, 2021
Upoważnienia: National Natural Science Foundation of China
Joint source separation of simultaneous EEG-fMRI recording in two experimental conditions using common spatial patterns
A Tan, Z Fu, Y Tu, YS Hung, Z Zhang
2015 37th Annual International Conference of the IEEE Engineering in …, 2015
Upoważnienia: Research Grants Council, Hong Kong
Functional and structural longitudinal change patterns in adolescent brain
R Saha, Z Fu, RF Silva, VD Calhoun
2023 45th Annual International Conference of the IEEE Engineering in …, 2023
Upoważnienia: US National Science Foundation, US National Institutes of Health
A Multimodal Learning Framework to Study Varying Information Complexity in Structural and Functional Sub-Domains in Schizophrenia
I Batta, A Abrol, Z Fu, V Calhoun
2021 IEEE 18th International Symposium on Biomedical Imaging (ISBI), 994-998, 2021
Upoważnienia: US National Institutes of Health
Varying Information Complexity in Functional Domain Interactions in Schizophrenia
I Batta, A Abrol, Z Fu, V Calhoun
2020 IEEE 20th International Conference on Bioinformatics and Bioengineering …, 2020
Upoważnienia: US National Institutes of Health
A least across-segment variance (LASV) method for the correction of EEG-fMRI desynchronization
A Tan, Y Tu, Z Fu, G Huang, YS Hung, Z Zhang
2017 8th International IEEE/EMBS Conference on Neural Engineering (NER), 5-8, 2017
Upoważnienia: Research Grants Council, Hong Kong
Informacje na temat publikacji i finansowania automatycznie określa program komputerowy