Obserwuj
Albert Musaelian
Albert Musaelian
Researcher, Harvard University
Zweryfikowany adres z g.harvard.edu
Tytuł
Cytowane przez
Cytowane przez
Rok
E (3)-equivariant graph neural networks for data-efficient and accurate interatomic potentials
S Batzner, A Musaelian, L Sun, M Geiger, JP Mailoa, M Kornbluth, ...
Nature communications 13 (1), 2453, 2022
13692022
Learning local equivariant representations for large-scale atomistic dynamics
A Musaelian, S Batzner, A Johansson, L Sun, CJ Owen, M Kornbluth, ...
Nature Communications 14 (1), 579, 2023
4572023
The design space of E (3)-equivariant atom-centred interatomic potentials
I Batatia, S Batzner, DP Kovács, A Musaelian, GNC Simm, R Drautz, ...
Nature Machine Intelligence, 1-12, 2025
1422025
Evolution of metastable structures at bimetallic surfaces from microscopy and machine-learning molecular dynamics
JS Lim, J Vandermause, MA Van Spronsen, A Musaelian, Y Xie, L Sun, ...
Journal of the American Chemical Society 142 (37), 15907-15916, 2020
712020
Scaling the Leading Accuracy of Deep Equivariant Models to Biomolecular Simulations of Realistic Size
B Kozinsky, A Musaelian, A Johansson, S Batzner
Proceedings of the International Conference for High Performance Computing …, 2023
592023
Fast uncertainty estimates in deep learning interatomic potentials
A Zhu, S Batzner, A Musaelian, B Kozinsky
The Journal of Chemical Physics 158 (16), 2023
492023
Unsupervised landmark analysis for jump detection in molecular dynamics simulations
L Kahle, A Musaelian, N Marzari, B Kozinsky
Physical Review Materials 3 (5), 055404, 2019
402019
Euclidean neural networks: e3nn
M Geiger, T Smidt, M Alby, BK Miller, W Boomsma, B Dice, K Lapchevskyi, ...
Preprint at https://doi. org/10.48550/arXiv 2207, 2022
352022
Advancing molecular simulation with equivariant interatomic potentials
S Batzner, A Musaelian, B Kozinsky
Nature Reviews Physics 5 (8), 437-438, 2023
302023
The Design Space of E (3)-Equivariant Atom-Centered Interatomic Potentials. 2022
I Batatia, S Batzner, DP Kovács, A Musaelian, GNC Simm, R Drautz, ...
URL https://arxiv. org/abs/2205.06643 5, 0
23
Complexity of many-body interactions in transition metals via machine-learned force fields from the TM23 data set
CJ Owen, SB Torrisi, Y Xie, S Batzner, K Bystrom, J Coulter, A Musaelian, ...
npj Computational Materials 10 (1), 92, 2024
192024
Transferability and accuracy of ionic liquid simulations with equivariant machine learning interatomic potentials
ZAH Goodwin, MB Wenny, JH Yang, A Cepellotti, J Ding, K Bystrom, ...
The Journal of Physical Chemistry Letters 15 (30), 7539-7547, 2024
112024
Accurate Surface and Finite-Temperature Bulk Properties of Lithium Metal at Large Scales Using Machine Learning Interaction Potentials
MK Phuthi, AM Yao, S Batzner, A Musaelian, P Guan, B Kozinsky, ...
ACS omega 9 (9), 10904-10912, 2024
112024
Thermodynamically Informed Multimodal Learning of High-Dimensional Free Energy Models in Molecular Coarse Graining
BR Duschatko, X Fu, C Owen, Y Xie, A Musaelian, T Jaakkola, B Kozinsky
arXiv preprint arXiv:2405.19386, 2024
72024
Unified differentiable learning of the electric enthalpy and dielectric properties with exact physical constraints
S Falletta, A Cepellotti, CW Tan, A Johansson, A Musaelian, CJ Owen, ...
arXiv e-prints, arXiv: 2403.17207, 2024
62024
Learning Interatomic Potentials at Multiple Scales
X Fu, A Musaelian, A Johansson, T Jaakkola, B Kozinsky
arXiv preprint arXiv:2310.13756, 2023
32023
A recipe for charge density prediction
X Fu, A Rosen, K Bystrom, R Wang, A Musaelian, B Kozinsky, T Smidt, ...
Advances in Neural Information Processing Systems 37, 9727-9752, 2024
12024
Atomistic evolution of active sites in multi-component heterogeneous catalysts
CJ Owen, L Russotto, CR O'Connor, N Marcella, A Johansson, ...
arXiv preprint arXiv:2407.13607, 2024
2024
Unified Differentiable Learning of Electric Response
S Falletta, A Cepellotti, A Johansson, CW Tan, A Musaelian, CJ Owen, ...
arXiv preprint arXiv:2403.17207, 2024
2024
Chemical Transferability and Accuracy of Ionic Liquid Simulations with Machine Learning Interatomic Potentials
ZAH Goodwin, MB Wenny, JH Yang, A Cepellotti, K Bystrom, ...
arXiv e-prints, arXiv: 2403.01980, 2024
2024
Nie można teraz wykonać tej operacji. Spróbuj ponownie później.
Prace 1–20