Obserwuj
Zinan Lin
Zinan Lin
Microsoft Research (Redmond), Carnegie Mellon University
Zweryfikowany adres z microsoft.com - Strona główna
Tytuł
Cytowane przez
Cytowane przez
Rok
Pacgan: The power of two samples in generative adversarial networks
Z Lin, A Khetan, G Fanti, S Oh
NeurIPS 2018 & IEEE JSAIT 2020, 2018
4442018
DecodingTrust: A Comprehensive Assessment of Trustworthiness in GPT Models
B Wang*, W Chen*, H Pei*, C Xie*, M Kang*, C Zhang*, C Xu, Z Xiong, ...
NeurIPS 2023, 2023
4332023
Robustness of conditional GANs to noisy labels
KK Thekumparampil, A Khetan, Z Lin, S Oh
NeurIPS 2018, 2018
3512018
Using GANs for Sharing Networked Time Series Data: Challenges, Initial Promise, and Open Questions
Z Lin, A Jain, C Wang, G Fanti, V Sekar
ACM IMC 2020, 2020
289*2020
InfoGAN-CR and ModelCentrality: Self-supervised Model Training and Selection for Disentangling GANs
Z Lin, KK Thekumparampil, G Fanti, S Oh
ICML 2020, 2020
144*2020
Skeleton-of-Thought: Large Language Models Can Do Parallel Decoding
X Ning*, Z Lin*, Z Zhou*, H Yang, Y Wang
ICLR 2024, 2024
103*2024
RNN-SM: Fast Steganalysis of VoIP Streams Using Recurrent Neural Network
Z Lin, Y Huang, J Wang
IEEE TIFS 2018, 2018
1032018
Practical GAN-based synthetic IP header trace generation using NetShare
Y Yin, Z Lin, M Jin, G Fanti, V Sekar
SIGCOMM 2022, 2022
802022
MLGO: a Machine Learning Guided Compiler Optimizations Framework
M Trofin*, Y Qian*, E Brevdo, Z Lin, K Choromanski, D Li
arXiv preprint arXiv:2101.04808, 2021
722021
Why Spectral Normalization Stabilizes GANs: Analysis and Improvements
Z Lin, V Sekar, G Fanti
NeurIPS 2021, 2021
662021
Privacy-Preserving In-Context Learning with Differentially Private Few-Shot Generation
X Tang, R Shin, HA Inan, A Manoel, F Mireshghallah, Z Lin, S Gopi, ...
ICLR 2024, 2024
562024
OMS-DPM: Optimizing the Model Schedule for Diffusion Probabilistic Models
E Liu*, X Ning*, Z Lin*, H Yang, Y Wang
ICML 2023, 2023
372023
On the Privacy Properties of GAN-generated Samples
Z Lin, V Sekar, G Fanti
AISTATS 2021, 2021
372021
Differentially Private Synthetic Data via Foundation Model APIs 1: Images
Z Lin, S Gopi, J Kulkarni, H Nori, S Yekhanin
ICLR 2024, 2024
362024
Pareto GAN: Extending the Representational Power of GANs to Heavy-Tailed Distributions
T Huster, JEJ Cohen, Z Lin, K Chan, C Kamhoua, N Leslie, CYJ Chiang, ...
ICML 2021, 2021
362021
Selective Pre-training for Private Fine-tuning
D Yu, S Gopi, J Kulkarni, Z Lin, S Naik, TL Religa, J Yin, H Zhang
TMLR, 2024
272024
Differentially Private Synthetic Data via Foundation Model APIs 2: Text
C Xie, Z Lin, A Backurs, S Gopi, D Yu, HA Inan, H Nori, H Jiang, H Zhang, ...
arXiv preprint arXiv:2403.01749, 2024
252024
Mixture-of-Linear-Experts for Long-term Time Series Forecasting
R Ni, Z Lin, S Wang, G Fanti
AISTATS 2014, 2024
212024
Vidit-q: Efficient and accurate quantization of diffusion transformers for image and video generation
T Zhao, T Fang, E Liu, R Wan, W Soedarmadji, S Li, Z Lin, G Dai, S Yan, ...
ICLR 2025, 2025
132025
MixDQ: Memory-Efficient Few-Step Text-to-Image Diffusion Models with Metric-Decoupled Mixed Precision Quantization
T Zhao, X Ning, T Fang, E Liu, G Huang, Z Lin, S Yan, G Dai, Y Wang
ECCV 2024, 2024
132024
Nie można teraz wykonać tej operacji. Spróbuj ponownie później.
Prace 1–20