Følg
Mickael Binois
Mickael Binois
Inria Sophia Antipolis - Méditerranée
Verifisert e-postadresse på inria.fr - Startside
Tittel
Sitert av
Sitert av
År
Practical heteroscedastic gaussian process modeling for large simulation experiments
M Binois, RB Gramacy, M Ludkovski
Journal of Computational and Graphical Statistics 27 (4), 808-821, 2018
2252018
Replication or exploration? Sequential design for stochastic simulation experiments
M Binois, J Huang, RB Gramacy, M Ludkovski
Technometrics 61 (1), 7-23, 2019
1452019
A survey on high-dimensional Gaussian process modeling with application to Bayesian optimization
M Binois, N Wycoff
ACM Transactions on Evolutionary Learning and Optimization 2 (2), 1-26, 2022
1132022
Quantifying uncertainty on Pareto fronts with Gaussian process conditional simulations
M Binois, D Ginsbourger, O Roustant
European Journal of Operational Research 243 (2), 386-394, 2015
852015
On the choice of the low-dimensional domain for global optimization via random embeddings
M Binois, D Ginsbourger, O Roustant
Journal of global optimization 76 (1), 69-90, 2020
712020
hetGP: Heteroskedastic Gaussian Process Modeling and Sequential Design in R
M Binois, RB Gramacy
44*
A warped kernel improving robustness in Bayesian optimization via random embeddings
M Binois, D Ginsbourger, O Roustant
Learning and Intelligent Optimization: 9th International Conference, LION 9 …, 2015
432015
A population data-driven workflow for COVID-19 modeling and learning
J Ozik, JM Wozniak, N Collier, CM Macal, M Binois
The International Journal of High Performance Computing Applications 35 (5 …, 2021
412021
GPareto: An R Package for Gaussian-Process-Based Multi-Objective Optimization and Analysis
M Binois, V Picheny
Journal of Statistical Software 89 (8), 2019
382019
A Bayesian optimization approach to find Nash equilibria
V Picheny, M Binois, A Habbal
Journal of Global Optimization 73, 171-192, 2019
372019
Sequential learning of active subspaces
N Wycoff, M Binois, SM Wild
Journal of Computational and Graphical Statistics, 1-33, 2021
332021
hetGP: Heteroskedastic Gaussian Process Modeling and Design under Replication
M Binois, RB Gramacy
R package version 1 (1), 2017
332017
Multiobjective statistical learning optimization of RGB metalens
MMR Elsawy, A Gourdin, M Binois, R Duvigneau, D Felbacq, S Khadir, ...
ACS Photonics 8 (8), 2498-2508, 2021
312021
Evaluating Gaussian process metamodels and sequential designs for noisy level set estimation
X Lyu, M Binois, M Ludkovski
Statistics and Computing 31 (4), 1-21, 2021
262021
Uncertainty quantification on pareto fronts and high-dimensional strategies in bayesian optimization, with applications in multi-objective automotive design
M Binois
Ecole Nationale Supérieure des Mines de Saint-Etienne, 2015
232015
The Kalai-Smorodinsky solution for many-objective Bayesian optimization
M Binois, V Picheny, P Taillandier, A Habbal
Journal of Machine Learning Research 21 (150), 1-42, 2020
222020
On the estimation of Pareto fronts from the point of view of copula theory
M Binois, D Rullière, O Roustant
Information Sciences 324, 270-285, 2015
222015
Parameter and uncertainty estimation for dynamical systems using surrogate stochastic processes
M Chung, M Binois, RB Gramacy, JM Bardsley, DJ Moquin, AP Smith, ...
SIAM Journal on Scientific Computing 41 (4), A2212-A2238, 2019
192019
On‐site surrogates for large‐scale calibration
J Huang, RB Gramacy, M Binois, M Libraschi
Applied Stochastic Models in Business and Industry 36 (2), 283-304, 2020
162020
Data-driven uncertainty quantification in macroscopic traffic flow models
A Würth, M Binois, P Goatin, S Göttlich
Advances in Computational Mathematics 48 (6), 1-26, 2022
152022
Systemet kan ikke utføre handlingen. Prøv på nytt senere.
Artikler 1–20