ediffi: Text-to-image diffusion models with an ensemble of expert denoisers Y Balaji, S Nah, X Huang, A Vahdat, J Song, Q Zhang, K Kreis, M Aittala, ... arXiv preprint arXiv:2211.01324, 2022 | 655 | 2022 |
Fast sampling of diffusion models with exponential integrator Q Zhang, Y Chen International Conference on Learning Representations, 2022 | 337 | 2022 |
gDDIM: Generalized denoising diffusion implicit models Q Zhang, M Tao, Y Chen International Conference on Learning Representations, 2022 | 106 | 2022 |
Diffusion normalizing flow Q Zhang, Y Chen Advances in neural information processing systems 34, 16280-16291, 2021 | 101 | 2021 |
Path integral sampler: a stochastic control approach for sampling Q Zhang, Y Chen International Conference on Learning Representations, 2021 | 73 | 2021 |
Variational Wasserstein gradient flow J Fan, Q Zhang, A Taghvaei, Y Chen ICML, 2021 | 59 | 2021 |
Multi-marginal optimal transport and probabilistic graphical models I Haasler, R Singh, Q Zhang, J Karlsson, Y Chen IEEE Transactions on Information Theory 67 (7), 4647-4668, 2021 | 58 | 2021 |
DiffCollage: Parallel Generation of Large Content with Diffusion Models Q Zhang, J Song, X Huang, Y Chen, MY Liu Conference on Computer Vision and Pattern Recognition, 2023 | 57 | 2023 |
Loss-Guided Diffusion Models for Plug-and-Play Controllable Generation J Song, Q Zhang, H Yin, M Mardani, MY Liu, J Kautz, Y Chen, A Vahdat International Conference on Machine Learning, 2023 | 53 | 2023 |
Improving robustness via risk averse distributional reinforcement learning R Singh, Q Zhang, Y Chen Learning for Dynamics and Control, 958-968, 2020 | 45 | 2020 |
Inference with aggregate data in probabilistic graphical models: An optimal transport approach R Singh, I Haasler, Q Zhang, J Karlsson, Y Chen IEEE Transactions on Automatic Control 67 (9), 4483-4497, 2022 | 32* | 2022 |
Distrifusion: Distributed parallel inference for high-resolution diffusion models M Li, T Cai, J Cao, Q Zhang, H Cai, J Bai, Y Jia, K Li, S Han Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern …, 2024 | 24 | 2024 |
Improved order analysis and design of exponential integrator for diffusion models sampling Q Zhang, J Song, Y Chen arXiv preprint arXiv:2308.02157, 2023 | 9 | 2023 |
An optimal control approach to particle filtering Q Zhang, A Taghvaei, Y Chen Automatica 151, 110894, 2023 | 9 | 2023 |
Symbolic music generation with non-differentiable rule guided diffusion Y Huang, A Ghatare, Y Liu, Z Hu, Q Zhang, CS Sastry, S Gururani, S Oore, ... arXiv preprint arXiv:2402.14285, 2024 | 7 | 2024 |
Condition-Aware Neural Network for Controlled Image Generation H Cai, M Li, Q Zhang, MY Liu, S Han Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern …, 2024 | 6 | 2024 |
Incremental inference of collective graphical models R Singh, I Haasler, Q Zhang, J Karlsson, Y Chen IEEE Control Systems Letters 5 (2), 421-426, 2020 | 6 | 2020 |
Masked diffusion models are secretly time-agnostic masked models and exploit inaccurate categorical sampling K Zheng, Y Chen, H Mao, MY Liu, J Zhu, Q Zhang arXiv preprint arXiv:2409.02908, 2024 | 5 | 2024 |
Edgerunner: Auto-regressive auto-encoder for artistic mesh generation J Tang, Z Li, Z Hao, X Liu, G Zeng, MY Liu, Q Zhang arXiv preprint arXiv:2409.18114, 2024 | 3 | 2024 |
Inference of aggregate hidden Markov models with continuous observations Q Zhang, R Singh, Y Chen IEEE Control Systems Letters 6, 2377-2382, 2022 | 3* | 2022 |