Efficient algorithms for temporal path computation H Wu, J Cheng, Y Ke, S Huang, Y Huang, H Wu IEEE Transactions on Knowledge and Data Engineering 28 (11), 2927-2942, 2016 | 137 | 2016 |
Reachability and time-based path queries in temporal graphs H Wu, Y Huang, J Cheng, J Li, Y Ke 2016 IEEE 32nd International Conference on Data Engineering (ICDE), 145-156, 2016 | 126 | 2016 |
Core decomposition in large temporal graphs H Wu, J Cheng, Y Lu, Y Ke, Y Huang, D Yan, H Wu 2015 IEEE International Conference on Big Data (Big Data), 649-658, 2015 | 107 | 2015 |
Flexps: Flexible parallelism control in parameter server architecture Y Huang, T Jin, Y Wu, Z Cai, X Yan, F Yang, J Li, Y Guo, J Cheng Proceedings of the VLDB Endowment 11 (5), 566-579, 2018 | 88 | 2018 |
Elastic deep learning in multi-tenant GPU clusters Y Wu, K Ma, X Yan, Z Liu, Z Cai, Y Huang, J Cheng, H Yuan, F Yu IEEE Transactions on Parallel and Distributed Systems 33 (1), 144-158, 2021 | 50 | 2021 |
Yugong: Geo-distributed data and job placement at scale Y Huang, Y Shi, Z Zhong, Y Feng, J Cheng, J Li, H Fan, C Li, T Guan, ... Proceedings of the VLDB Endowment 12 (12), 2155-2169, 2019 | 45 | 2019 |
Graphd: Distributed vertex-centric graph processing beyond the memory limit D Yan, Y Huang, M Liu, H Chen, J Cheng, H Wu, C Zhang IEEE Transactions on Parallel and Distributed Systems 29 (1), 99-114, 2017 | 40 | 2017 |
Tensoropt: Exploring the tradeoffs in distributed dnn training with auto-parallelism Z Cai, X Yan, K Ma, Y Wu, Y Huang, J Cheng, T Su, F Yu IEEE Transactions on Parallel and Distributed Systems 33 (8), 1967-1981, 2021 | 39 | 2021 |
Training recommender systems at scale: Communication-efficient model and data parallelism V Gupta, D Choudhary, P Tang, X Wei, X Wang, Y Huang, A Kejariwal, ... Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data …, 2021 | 39 | 2021 |
LFTF: A framework for efficient tensor analytics at scale F Yang, F Shang, Y Huang, J Cheng, J Li, Y Zhao, R Zhao Proceedings of the VLDB Endowment 10 (7), 745-756, 2017 | 32 | 2017 |
Losha: A general framework for scalable locality sensitive hashing J Li, J Cheng, F Yang, Y Huang, Y Zhao, X Yan, R Zhao Proceedings of the 40th International ACM SIGIR Conference on Research and …, 2017 | 18 | 2017 |
A comparison of general-purpose distributed systems for data processing J Li, J Cheng, Y Zhao, F Yang, Y Huang, H Chen, R Zhao 2016 IEEE International Conference on Big Data (Big Data), 378-383, 2016 | 17 | 2016 |
Tangram: bridging immutable and mutable abstractions for distributed data analytics Y Huang, X Yan, G Jiang, T Jin, J Cheng, A Xu, Z Liu, S Tu 2019 USENIX Annual Technical Conference (USENIX ATC 19), 191-206, 2019 | 16 | 2019 |
Fast distributed training of deep neural networks: Dynamic communication thresholding for model and data parallelism V Gupta, D Choudhary, PTP Tang, X Wei, X Wang, Y Huang, A Kejariwal, ... CoRR, 2020 | 15 | 2020 |
Efficient processing of very large graphs in a small cluster D Yan, Y Huang, J Cheng, H Wu arXiv preprint arXiv:1601.05590, 2016 | 14 | 2016 |
The best of both worlds: Big data programming with both productivity and performance F Yang, Y Huang, Y Zhao, J Li, G Jiang, J Cheng Proceedings of the 2017 ACM International Conference on Management of Data …, 2017 | 13 | 2017 |
Hierarchical training: Scaling deep recommendation models on large CPU clusters Y Huang, X Wei, X Wang, J Yang, BY Su, S Bharuka, D Choudhary, ... Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data …, 2021 | 12 | 2021 |
Pre-train and search: Efficient embedding table sharding with pre-trained neural cost models D Zha, L Feng, L Luo, B Bhushanam, Z Liu, Y Hu, J Nie, Y Huang, Y Tian, ... arXiv preprint arXiv:2305.01868, 2023 | 9 | 2023 |
Efficient processing of reachability and time-based path queries in a temporal graph H Wu, Y Huang, J Cheng, J Li, Y Ke arXiv preprint arXiv:1601.05909, 2016 | 5 | 2016 |
FEC: Efficient Deep Recommendation Model Training with Flexible Embedding Communication K Ma, X Yan, Z Cai, Y Huang, Y Wu, J Cheng Proceedings of the ACM on Management of Data 1 (2), 1-21, 2023 | 2 | 2023 |