Comprehensive learning particle swarm optimizer for global optimization of multimodal functions JJ Liang, AK Qin, PN Suganthan, S Baskar Evolutionary Computation, IEEE Transactions on 10 (3), 281-295, 2006 | 4288 | 2006 |
Differential evolution algorithm with strategy adaptation for global numerical optimization AK Qin, VL Huang, PN Suganthan Evolutionary Computation, IEEE Transactions on 13 (2), 398-417, 2009 | 4165 | 2009 |
Self-adaptive differential evolution algorithm for numerical optimization AK Qin, PN Suganthan Evolutionary Computation, 2005. The 2005 IEEE Congress on 2, 1785-1791 Vol. 2, 2005 | 1578 | 2005 |
Evolutionary extreme learning machine QY Zhu, AK Qin, PN Suganthan, GB Huang Pattern recognition 38 (10), 1759-1763, 2005 | 954 | 2005 |
Multiobjective deep belief networks ensemble for remaining useful life estimation in prognostics C Zhang, P Lim, AK Qin, KC Tan IEEE transactions on neural networks and learning systems 28 (10), 2306-2318, 2017 | 858 | 2017 |
Benchmark functions for the CEC 2013 special session and competition on large-scale global optimization X Li, K Tang, MN Omidvar, Z Yang, K Qin, H China Gene 7, 33, 2013 | 520 | 2013 |
Self-adaptive differential evolution algorithm for constrained real-parameter optimization VL Huang, AK Qin, PN Suganthan Evolutionary Computation, 2006. CEC 2006. IEEE Congress on, 17-24, 2006 | 520* | 2006 |
A deep convolutional coupling network for change detection based on heterogeneous optical and radar images J Liu, M Gong, K Qin, P Zhang IEEE transactions on neural networks and learning systems 29 (3), 545-559, 2016 | 456 | 2016 |
A survey on modern deep neural network for traffic prediction: Trends, methods and challenges DA Tedjopurnomo, Z Bao, B Zheng, F Choudhury, AK Qin IEEE Transactions on Knowledge and Data Engineering, 2020 | 372 | 2020 |
Evolutionary multitasking via explicit autoencoding L Feng, L Zhou, J Zhong, A Gupta, YS Ong, KC Tan, AK Qin IEEE transactions on cybernetics 49 (9), 3457-3470, 2018 | 345 | 2018 |
A review of population initialization techniques for evolutionary algorithms B Kazimipour, X Li, AK Qin Evolutionary Computation (CEC), 2014 IEEE Congress on, 2585-2592, 2014 | 284 | 2014 |
Unsupervised Polarimetric SAR Image Segmentation and Classification Using Region Growing With Edge Penalty P Yu, AK Qin, DA Clausi Geoscience and Remote Sensing, IEEE Transactions on 50 (4), 1302-1317, 2012 | 247 | 2012 |
Adversarial Camouflage: Hiding Physical-World Attacks with Natural Styles R Duan, X Ma, Y Wang, J Bailey, AK Qin, Y Yang arXiv preprint arXiv:2003.08757, 2020 | 246 | 2020 |
Evolutionary Multitasking for Single-objective Continuous Optimization: Benchmark Problems, Performance Metric, and Baseline Results B Da, YS Ong, L Feng, AK Qin, A Gupta, Z Zhu, CK Ting, K Tang, X Yao arXiv preprint arXiv:1706.03470, 2017 | 228 | 2017 |
Private Spatial Data Aggregation in the Local Setting R Chen, H Li, AK Qin, SP Kasiviswanathan, H Jin | 204* | |
Self-regulated Evolutionary Multi-task Optimization X Zheng, AK Qin, M Gong, D Zhou IEEE Transactions on Evolutionary Computation, 2019 | 169 | 2019 |
Commonality autoencoder: Learning common features for change detection from heterogeneous images Y Wu, J Li, Y Yuan, AK Qin, QG Miao, MG Gong IEEE transactions on neural networks and learning systems 33 (9), 4257-4270, 2021 | 161 | 2021 |
Robust growing neural gas algorithm with application in cluster analysis AK Qin, PN Suganthan Neural Networks 17 (8-9), 1135-1148, 2004 | 146 | 2004 |
Linear dimensionality reduction using relevance weighted LDA EK Tang, PN Suganthan, X Yao, AK Qin Pattern recognition 38 (4), 485-493, 2005 | 145 | 2005 |
A Survey on Differentially Private Machine Learning M Gong, Y Xie, K Pan, K Feng, AK Qin IEEE Computational Intelligence Magazine 15 (2), 49-64, 2020 | 144 | 2020 |