Volgen
Andrea Baisero
Andrea Baisero
PhD student, Northeastern University
Geverifieerd e-mailadres voor northeastern.edu - Homepage
Titel
Geciteerd door
Geciteerd door
Jaar
Robot programming from demonstration, feedback and transfer
Y Mollard, T Munzer, A Baisero, M Toussaint, M Lopes
2015 IEEE/RSJ international conference on intelligent robots and systems …, 2015
542015
Unbiased asymmetric reinforcement learning under partial observability
A Baisero, C Amato
arXiv preprint arXiv:2105.11674, 2021
32*2021
Leveraging fully observable policies for learning under partial observability
H Nguyen, A Baisero, D Wang, C Amato, R Platt
arXiv preprint arXiv:2211.01991, 2022
242022
A deeper understanding of state-based critics in multi-agent reinforcement learning
X Lyu, A Baisero, Y Xiao, C Amato
Proceedings of the AAAI conference on artificial intelligence 36 (9), 9396-9404, 2022
192022
Temporal segmentation of pair-wise interaction phases in sequential manipulation demonstrations
A Baisero, Y Mollard, M Lopes, M Toussaint, I Lütkebohle
2015 IEEE/RSJ International Conference on Intelligent Robots and Systems …, 2015
192015
On centralized critics in multi-agent reinforcement learning
X Lyu, A Baisero, Y Xiao, B Daley, C Amato
Journal of Artificial Intelligence Research 77, 295-354, 2023
142023
Asymmetric DQN for partially observable reinforcement learning
A Baisero, B Daley, C Amato
Uncertainty in Artificial Intelligence, 107-117, 2022
112022
Active goal recognition
C Amato, A Baisero
arXiv preprint arXiv:1909.11173, 2019
92019
Equivariant reinforcement learning under partial observability
HH Nguyen, A Baisero, D Klee, D Wang, R Platt, C Amato
Conference on Robot Learning, 3309-3320, 2023
82023
Semi-autonomous 3rd-hand robot
M Lopes, J Peters, J Piater, M Toussaint, A Baisero, B Busch, O Erkent, ...
Robot. Future Manuf. Scenar 3, 2015
82015
Learning internal state models in partially observable environments
A Baisero, C Amato
Reinforcement Learning under Partial Observability, NeurIPS Workshop, 2018
72018
Learning Complementary Representations of the Past using Auxiliary Tasks in Partially Observable Reinforcement Learning.
A Baisero, C Amato
AAMAS, 1762-1764, 2020
52020
The Path Kernel.
A Baisero, FT Pokorny, D Kragic, CH Ek
ICPRAM, 50-57, 2013
52013
Hierarchical reinforcement learning under mixed observability
H Nguyen, Z Yang, A Baisero, X Ma, R Platt, C Amato
International Workshop on the Algorithmic Foundations of Robotics, 188-204, 2022
42022
On a family of decomposable kernels on sequences
A Baisero, FT Pokorny, CH Ek
arXiv preprint arXiv:1501.06284, 2015
42015
Reconciling Rewards with Predictive State Representations
A Baisero, C Amato
Proceedings of the Thirtieth International Joint Conference on Artificial …, 2021
22021
The path kernel: A novel kernel for sequential data
A Baisero, FT Pokorny, D Kragic, CH Ek
Pattern Recognition Applications and Methods: International Conference …, 2014
22014
On Stateful Value Factorization in Multi-Agent Reinforcement Learning
E Marchesini, A Baisero, R Bhati, C Amato
arXiv preprint arXiv:2408.15381, 2024
12024
Identification of Unmodeled Objects from Symbolic Descriptions
A Baisero, S Otte, P Englert, M Toussaint
arXiv preprint arXiv:1701.06450, 2017
2017
Encoding Sequential Structures using Kernels.
A Baisero
Royal Institute of Technology (KTH), 2012
2012
Het systeem kan de bewerking nu niet uitvoeren. Probeer het later opnieuw.
Artikelen 1–20