Similarity Based Stratified Splitting: an approach to train better classifiers F Farias, T Ludermir, C Bastos-Filho arXiv preprint arXiv:2010.06099, 2020 | 20 | 2020 |
Building energy consumption models based on smartphone user’s usage patterns ASB Neto, F Farias, MAT Mialaret, B Cartaxo, PA Lima, P Maciel Knowledge-Based Systems 213, 106680, 2021 | 18 | 2021 |
Blind adaptive mask to improve intelligibility of non-stationary noisy speech F Farias, R Coelho IEEE Signal Processing Letters 28, 1170-1174, 2021 | 14 | 2021 |
A robust fleet-based anomaly detection framework applied to wind turbine vibration data GNP Leite, FC Farias, TG de Sá, ACA da Costa, LJP Brennand, ... Engineering Applications of Artificial Intelligence 126, 106859, 2023 | 10 | 2023 |
Comparing transfer learning approaches applied to distracted driver detection FR da Silva Oliveira, FC Farias 2018 IEEE Latin American Conference on Computational Intelligence (LA-CCI), 1-6, 2018 | 9 | 2018 |
O que conta? MA Vieira | 8 | 2013 |
Ensemble learning framework for fleet-based anomaly detection using wind turbine drivetrain components vibration data. CF de Lima Munguba, GNP Leite, FC Farias, ACA da Costa, ... Engineering Applications of Artificial Intelligence 133, 108363, 2024 | 6 | 2024 |
Remaining useful life estimation framework for the main bearing of wind turbines operating in real time JLM Vieira, FC Farias, AAV Ochoa, FD de Menezes, ACA Costa, ... Energies 17 (6), 1430, 2024 | 5* | 2024 |
Classificação de sinais de trânsito usando otimização por colmeias e random forest JC Silva, FC Farias, VCF Lima, VLB Silva, LM Seijas, CJA Bastos-Filho Anais do XII Congresso Brasileiro de Inteligência Computacional, 1-6, 2015 | 4 | 2015 |
Performance comparison of tts models for brazilian portuguese to establish a baseline W Lobato, F Farias, W Cruz, M Amadeus ICASSP 2023-2023 IEEE International Conference on Acoustics, Speech and …, 2023 | 3 | 2023 |
Embarrassingly parallel independent training of multi-layer perceptrons with heterogeneous architectures FC Farias, TB Ludermir, CJA Bastos-Filho AI 4 (1), 16-27, 2022 | 2 | 2022 |
Analyzing the impact of data representations in classification problems using clustering FC Farias, TB Ludermir, CJABF Ecomp, FR da Silva Oliveira 2019 International Joint Conference on Neural Networks (IJCNN), 1-6, 2019 | 2 | 2019 |
Approach of passive smoking by Brazilian pediatricians F Farias, F Milaneis, F Lopes, N Campos, T Soares, T Staniszewski, ... European Respiratory Journal 46 (suppl 59), 2015 | 1 | 2015 |
comparando técnicas de aprendizado de máquina para classificação de sinais de eletroencefalograma F Farias, D Rativa, C Bastos Filho | 1 | 2014 |
Bilingual Asr Model With Language Identification for Brazilian Portuguese and South-American Spanish F Farias, W Lobato, W Castañeda, M Amadeus | | 2022 |
Have we been Naive to Select Machine Learning Models? Noisy Data are here to Stay! FC Farias, TB Ludermir, CJA Bastos-Filho arXiv preprint arXiv:2207.06651, 2022 | | 2022 |
FOUR-YEAR FOLLOW-UP OF A TWO DAY EDUCATIONAL PROGRAM ABOUT OA IN BRAZIL J Da Silva, M De Rezende, G Ocampos, T Spada, L Francisco, ... Springer, 2020 | | 2020 |
Clustering for Data-driven Unraveling Artificial Neural Networks F Farias, T Ludermir, C Bastos-Filho Encontro Nacional de Inteligência Artificial e Computacional (ENIAC), 567-578, 2020 | | 2020 |
MULTIMODAL OA TREATMENT PROGRAM REDUCES BMI MD REZENDE, G Ocampos, N Brito, F Farias, CD SILVA, C Cernigoy, ... Osteoporosis International, 2020 | | 2020 |
Evaluation of deep learning architectures applied to identification of diseases in grape leaves FRS Oliveira, FC Farias, BJ de Barros Caldas Encontro Nacional de Inteligência Artificial e Computacional (ENIAC), 550-561, 2018 | | 2018 |