フォロー
Jiancan Wu
タイトル
引用先
引用先
Self-supervised graph learning for recommendation
J Wu, X Wang, F Feng, X He, L Chen, J Lian, X Xie
Proceedings of the 44th international ACM SIGIR conference on research and …, 2021
11262021
Causal attention for interpretable and generalizable graph classification
Y Sui, X Wang, J Wu, M Lin, X He, TS Chua
Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and …, 2022
1572022
Graph convolution machine for context-aware recommender system
J Wu, X He, X Wang, Q Wang, W Chen, J Lian, X Xie
Frontiers Comput. Sci 16 (6), 2022
792022
LLaRA: Large Language-Recommendation Assistant
J Liao, S Li, Z Yang, J Wu, Y Yuan, X Wang, X He
Proceedings of the 47th international ACM SIGIR conference on research and …, 2023
67*2023
On the effectiveness of sampled softmax loss for item recommendation
J Wu, X Wang, X Gao, J Chen, H Fu, T Qiu
ACM Transactions on Information Systems 42 (4), 1-26, 2024
622024
Gif: A general graph unlearning strategy via influence function
J Wu, Y Yang, Y Qian, Y Sui, X Wang, X He
Proceedings of the ACM Web Conference 2023, 651-661, 2023
402023
Unleashing the power of graph data augmentation on covariate distribution shift
Y Sui, Q Wu, J Wu, Q Cui, L Li, J Zhou, X Wang, X He
Advances in Neural Information Processing Systems 36, 2024
37*2024
Generate what you prefer: Reshaping sequential recommendation via guided diffusion
Z Yang, J Wu, Z Wang, X Wang, Y Yuan, X He
Advances in Neural Information Processing Systems 36, 2024
352024
Cross pairwise ranking for unbiased item recommendation
Q Wan, X He, X Wang, J Wu, W Guo, R Tang
Proceedings of the ACM Web Conference 2022, 2370-2378, 2022
332022
Large language model can interpret latent space of sequential recommender
Z Yang, J Wu, Y Luo, J Zhang, Y Yuan, A Zhang, X Wang, X He
arXiv preprint arXiv:2310.20487, 2023
302023
A generic learning framework for sequential recommendation with distribution shifts
Z Yang, X He, J Zhang, J Wu, X Xin, J Chen, X Wang
Proceedings of the 46th International ACM SIGIR Conference on Research and …, 2023
292023
Adap-τ: Adaptively modulating embedding magnitude for recommendation
J Chen, J Wu, J Wu, X Cao, S Zhou, X He
Proceedings of the ACM Web Conference 2023, 1085-1096, 2023
292023
Understanding contrastive learning via distributionally robust optimization
J Wu, J Chen, J Wu, W Shi, X Wang, X He
Advances in Neural Information Processing Systems 36, 2024
212024
Recommendation unlearning via influence function
Y Zhang, Z Hu, Y Bai, J Wu, Q Wang, F Feng
ACM Transactions on Recommender Systems, 2023
182023
Mugglemath: Assessing the impact of query and response augmentation on math reasoning
C Li, Z Yuan, H Yuan, G Dong, K Lu, J Wu, C Tan, X Wang, C Zhou
Proceedings of the 62nd Annual Meeting of the Association for Computational …, 2024
16*2024
Dynamic Sparse Learning: A Novel Paradigm for Efficient Recommendation
S Wang, Y Sui, J Wu, Z Zheng, H Xiong
Proceedings of the 17th ACM International Conference on Web Search and Data …, 2024
122024
Knowledge-enhanced causal reinforcement learning model for interactive recommendation
W Nie, X Wen, J Liu, J Chen, J Wu, G Jin, J Lu, AA Liu
IEEE Transactions on Multimedia 26, 1129-1142, 2023
122023
How graph convolutions amplify popularity bias for recommendation?
J Chen, J Wu, J Chen, X Xin, Y Li, X He
Frontiers of Computer Science 18 (5), 185603, 2024
112024
Let Me Do It For You: Towards LLM Empowered Recommendation via Tool Learning
Y Zhao, J Wu, X Wang, W Tang, D Wang, M de Rijke
SIGIR 2024, 2024
92024
Bsl: Understanding and improving softmax loss for recommendation
J Wu, J Chen, J Wu, W Shi, J Zhang, X Wang
2024 IEEE 40th International Conference on Data Engineering (ICDE), 816-830, 2024
72024
現在システムで処理を実行できません。しばらくしてからもう一度お試しください。
論文 1–20