フォロー
Pan Li
Pan Li
Assistant Professor, Scheller College of Business, Georgia Institute of Technology
確認したメール アドレス: gatech.edu - ホームページ
タイトル
引用先
引用先
Ddtcdr: Deep dual transfer cross domain recommendation
P Li, A Tuzhilin
Proceedings of the 13th international conference on web search and data …, 2020
3062020
Person-job fit: Adapting the right talent for the right job with joint representation learning
C Zhu, H Zhu, H Xiong, C Ma, F Xie, P Ding, P Li
ACM Transactions on Management Information Systems (TMIS) 9 (3), 1-17, 2018
1762018
Measuring the popularity of job skills in recruitment market: A multi-criteria approach
T Xu, H Zhu, C Zhu, P Li, H Xiong
Proceedings of the AAAI conference on artificial intelligence 32 (1), 2018
872018
Dual metric learning for effective and efficient cross-domain recommendations
P Li, A Tuzhilin
IEEE Transactions on Knowledge and Data Engineering 35 (1), 321-334, 2021
672021
PURS: personalized unexpected recommender system for improving user satisfaction
P Li, M Que, Z Jiang, Y Hu, A Tuzhilin
Proceedings of the 14th ACM Conference on Recommender Systems, 279-288, 2020
54*2020
Dual attentive sequential learning for cross-domain click-through rate prediction
P Li, Z Jiang, M Que, Y Hu, A Tuzhilin
Proceedings of the 27th ACM SIGKDD conference on knowledge discovery & data …, 2021
522021
Towards Controllable and Personalized Review Generation
P Li, A Tuzhilin
Proceedings of the 2019 Conference on Empirical Methods in Natural Language …, 2019
432019
Latent multi-criteria ratings for recommendations
P Li, A Tuzhilin
Proceedings of the 13th ACM Conference on Recommender Systems, 428-431, 2019
272019
Learning latent multi-criteria ratings from user reviews for recommendations
P Li, A Tuzhilin
IEEE Transactions on Knowledge and Data Engineering 34 (8), 3854-3866, 2020
152020
Latent unexpected recommendations
P Li, A Tuzhilin
ACM Transactions on Intelligent Systems and Technology (TIST) 11 (6), 1-25, 2020
132020
Adversarial learning for cross domain recommendations
P Li, B Brost, A Tuzhilin
ACM Transactions on Intelligent Systems and Technology 14 (1), 1-25, 2022
122022
When variety seeking meets unexpectedness: Incorporating variety-seeking behaviors into design of unexpected recommender systems
P Li, A Tuzhilin
Information Systems Research 35 (3), 1257-1273, 2024
112024
Bridging Listeners with Artists: Deep Multi-Objective Multi-Stakeholder Music Recommendations
M Unger, P Li, MC Cohen, B Brost, A Tuzhilin
NYU Stern School of Business Forthcoming, 2021
102021
Prompt tuning large language models on personalized aspect extraction for recommendations
P Li, Y Wang, EH Chi, M Chen
arXiv preprint arXiv:2306.01475, 2023
72023
Latent Modeling of Unexpectedness for Recommendations.
P Li, A Tuzhilin
RecSys (late-breaking results), 36-40, 2019
72019
Leveraging multi-faceted user preferences for improving click-through rate predictions
P Li
Proceedings of the 15th ACM Conference on Recommender Systems, 864-868, 2021
52021
Dual contrastive learning for efficient static feature representation in sequential recommendations
P Li, M Que, A Tuzhilin
IEEE Transactions on Knowledge and Data Engineering 36 (2), 544-555, 2023
42023
Latent Unexpected and Useful Recommendation
P Li, A Tuzhilin
arXiv preprint arXiv:1905.01546, 2019
42019
Don’t need all eggs in one basket: Reconstructing composite embeddings of customers from individual-domain embeddings
M Unger, P Li, S Sen, A Tuzhilin
ACM Transactions on Management Information Systems 14 (2), 1-30, 2023
32023
Deep Pareto Reinforcement Learning for Multi-Objective Recommender Systems
P Li, A Tuzhilin
arXiv preprint arXiv:2407.03580, 2024
22024
現在システムで処理を実行できません。しばらくしてからもう一度お試しください。
論文 1–20