フォロー
Naomi Saphra
Naomi Saphra
Kempner Institute at Harvard University
確認したメール アドレス: fas.harvard.edu - ホームページ
タイトル
引用先
引用先
Dynet: The dynamic neural network toolkit
G Neubig, C Dyer, Y Goldberg, A Matthews, W Ammar, A Anastasopoulos, ...
arXiv preprint arXiv:1701.03980, 2017
2782017
Understanding objects in detail with fine-grained attributes
A Vedaldi, S Mahendran, S Tsogkas, S Maji, R Girshick, J Kannala, ...
Proceedings of the IEEE conference on computer vision and pattern …, 2014
1322014
Understanding learning dynamics of language models with SVCCA
N Saphra, A Lopez
arXiv preprint arXiv:1811.00225, 2018
112*2018
A taxonomy and review of generalization research in NLP
D Hupkes, M Giulianelli, V Dankers, M Artetxe, Y Elazar, T Pimentel, ...
Nature Machine Intelligence 5 (10), 1161-1174, 2023
111*2023
Understanding privacy-related questions on stack overflow
M Tahaei, K Vaniea, N Saphra
Proceedings of the 2020 CHI conference on human factors in computing systems …, 2020
972020
The multiberts: Bert reproductions for robustness analysis
T Sellam, S Yadlowsky, J Wei, N Saphra, A D'Amour, T Linzen, J Bastings, ...
arXiv preprint arXiv:2106.16163, 2021
912021
An algerian arabic-french code-switched corpus
R Cotterell, A Renduchintala, N Saphra, C Callison-Burch
Workshop on free/open-source arabic corpora and corpora processing tools …, 2014
732014
Pareto probing: Trading off accuracy for complexity
T Pimentel, N Saphra, A Williams, R Cotterell
arXiv preprint arXiv:2010.02180, 2020
612020
Linear connectivity reveals generalization strategies
J Juneja, R Bansal, K Cho, J Sedoc, N Saphra
arXiv preprint arXiv:2205.12411, 2022
482022
Sudden drops in the loss: Syntax acquisition, phase transitions, and simplicity bias in MLMs
A Chen, R Shwartz-Ziv, K Cho, ML Leavitt, N Saphra
arXiv preprint arXiv:2309.07311, 2023
342023
A framework for (under) specifying dependency syntax without overloading annotators
N Schneider, B O'Connor, N Saphra, D Bamman, M Faruqui, NA Smith, ...
arXiv preprint arXiv:1306.2091, 2013
312013
A non-linear structural probe
JC White, T Pimentel, N Saphra, R Cotterell
arXiv preprint arXiv:2105.10185, 2021
292021
LSTMs compose (and learn) bottom-up
N Saphra, A Lopez
arXiv preprint arXiv:2010.04650, 2020
19*2020
Benchmarking compositionality with formal languages
J Valvoda, N Saphra, J Rawski, A Williams, R Cotterell
arXiv preprint arXiv:2208.08195, 2022
152022
First tragedy, then parse: History repeats itself in the new era of large language models
N Saphra, E Fleisig, K Cho, A Lopez
arXiv preprint arXiv:2311.05020, 2023
142023
Amrica: an amr inspector for cross-language alignments
N Saphra, A Lopez
Proceedings of the 2015 conference of the north american chapter of the …, 2015
132015
Transcendence: Generative Models Can Outperform The Experts That Train Them
E Zhang, V Zhu, N Saphra, A Kleiman, BL Edelman, M Tambe, ...
arXiv preprint arXiv:2406.11741, 2024
72024
TRAM: Bridging Trust Regions and Sharpness Aware Minimization
T Sherborne, N Saphra, P Dasigi, H Peng
arXiv preprint arXiv:2310.03646, 2023
42023
Training dynamics of neural language models
N Saphra
The University of Edinburgh, 2021
42021
Benchmarks as microscopes: A call for model metrology
M Saxon, A Holtzman, P West, WY Wang, N Saphra
arXiv preprint arXiv:2407.16711, 2024
32024
現在システムで処理を実行できません。しばらくしてからもう一度お試しください。
論文 1–20