עקוב אחר
Leslie N. Smith
Leslie N. Smith
כתובת אימייל מאומתת בדומיין nrl.navy.mil
כותרת
צוטט על ידי
צוטט על ידי
שנה
Cyclical learning rates for training neural networks
LN Smith
2017 IEEE winter conference on applications of computer vision (WACV), 464-472, 2017
37872017
Super-convergence: Very fast training of neural networks using large learning rates
LN Smith, N Topin
Artificial intelligence and machine learning for multi-domain operations …, 2019
17902019
A disciplined approach to neural network hyper-parameters: Part 1--learning rate, batch size, momentum, and weight decay
LN Smith
arXiv preprint arXiv:1803.09820, 2018
14772018
A disciplined approach to neural network hyper-parameters: Part 1—Learning rate, batch size, momentum, and weight decay. arXiv 2018
LN Smith
arXiv preprint arXiv:1803.09820, 1803
2091803
Super-convergence: Very fast training of residual networks using large learning rates
LN Smith, N Topin
arXiv preprint arXiv:1708.07120 5, 2017
1892017
Improving dictionary learning: Multiple dictionary updates and coefficient reuse
LN Smith, M Elad
IEEE Signal Processing Letters 20 (1), 79-82, 2012
1622012
Rotational compound state resonances for an argon and methane scattering system
LN Smith, DJ Malik, D Secrest
The Journal of Chemical Physics 71 (11), 4502-4514, 1979
1051979
Deep convolutional neural network design patterns
LN Smith, N Topin
arXiv preprint arXiv:1611.00847, 2016
832016
2017 IEEE winter conference on applications of computer vision (WACV)
LN Smith
IEEE, 2017
642017
Close‐coupling and coupled state calculations of argon scattering from normal methane
LN Smith, D Secrest
The Journal of Chemical Physics 74 (7), 3882-3897, 1981
611981
Super-convergence: very fast training of neural networks using large learning rates, arXiv
LN Smith, N Topin
arXiv preprint arXiv:1708.07120 6, 2017
572017
An approach to explainable deep learning using fuzzy inference
D Bonanno, K Nock, L Smith, P Elmore, F Petry
Next-Generation Analyst V 10207, 132-136, 2017
502017
A Disciplined Approach to Neural Network Hyper-Parameters: Part 1–Learning Rate
LN Smith
Batch size, Momentum, and Weight decay 8, 1803, 2018
392018
Gradual dropin of layers to train very deep neural networks
LN Smith, EM Hand, T Doster
Proceedings of the IEEE conference on computer vision and pattern …, 2016
382016
Restoration of turbulence degraded underwater images
AV Kanaev, W Hou, S Woods, LN Smith
Optical Engineering 51 (5), 057007-057007, 2012
382012
Exploring loss function topology with cyclical learning rates
LN Smith, N Topin
arXiv preprint arXiv:1702.04283, 2017
302017
Disambiguation protocols based on risk simulation
DE Fishkind, CE Priebe, KE Giles, LN Smith, V Aksakalli
IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and …, 2007
282007
Cyclical focal loss
LN Smith
arXiv preprint arXiv:2202.08978, 2022
212022
Selecting subgoals using deep learning in minecraft: A preliminary report
D Bonanno, M Roberts, L Smith, DW Aha
IJCAI workshop on deep learning for artificial intelligence 32, 2016
172016
General cyclical training of neural networks
LN Smith
arXiv preprint arXiv:2202.08835, 2022
112022
המערכת אינה יכולה לבצע את הפעולה כעת. נסה שוב מאוחר יותר.
מאמרים 1–20