Segui
Arshdeep Sekhon
Arshdeep Sekhon
Applied Scientist @ Microsoft
Email verificata su microsoft.com - Home page
Titolo
Citata da
Citata da
Anno
Attend and predict: Understanding gene regulation by selective attention on chromatin
R Singh, J Lanchantin, A Sekhon, Y Qi
Advances in neural information processing systems 30, 2017
972017
DeepDiff: DEEP-learning for predicting DIFFerential gene expression from histone modifications
A Sekhon, R Singh, Y Qi
Bioinformatics 34 (17), i891-i900, 2018
692018
Neural message passing for multi-label classification
J Lanchantin, A Sekhon, Y Qi
Machine Learning and Knowledge Discovery in Databases: European Conference …, 2020
482020
Perturbing inputs for fragile interpretations in deep natural language processing
S Sinha, H Chen, A Sekhon, Y Ji, Y Qi
arXiv preprint arXiv:2108.04990, 2021
422021
GaKCo: A Fast Gapped k-mer String Kernel Using Counting
R Singh, A Sekhon, K Kowsari, J Lanchantin, B Wang, Y Qi
Joint European Conference on Machine Learning and Knowledge Discovery in …, 2017
352017
Transfer learning for predicting virus-host protein interactions for novel virus sequences
J Lanchantin, T Weingarten, A Sekhon, C Miller, Y Qi
Proceedings of the 12th ACM International Conference on Bioinformatics …, 2021
152021
Does Prompt Formatting Have Any Impact on LLM Performance?
J He, M Rungta, D Koleczek, A Sekhon, FX Wang, S Hasan
arXiv preprint arXiv:2411.10541, 2024
132024
Fast and scalable learning of sparse changes in high-dimensional gaussian graphical model structure
B Wang, Y Qi
International Conference on Artificial Intelligence and Statistics, 1691-1700, 2018
92018
ST-MAML: A stochastic-task based method for task-heterogeneous meta-learning
Z Wang, J Grigsby, A Sekhon, Y Qi
Uncertainty in Artificial Intelligence, 2066-2074, 2022
72022
Evolving image compositions for feature representation learning
P Cascante-Bonilla, A Sekhon, Y Qi, V Ordonez
arXiv preprint arXiv:2106.09011, 2021
72021
A fast and scalable joint estimator for integrating additional knowledge in learning multiple related sparse Gaussian graphical models
B Wang, A Sekhon, Y Qi
International Conference on Machine Learning, 5161-5170, 2018
62018
Prototype Matching Networks for Large-Scale Multi-label Genomic Sequence Classification
J Lanchantin, A Sekhon, R Singh, Y Qi
arXiv preprint arXiv:1710.11238, 2017
62017
Improving interpretability via explicit word interaction graph layer
A Sekhon, H Chen, A Shrivastava, Z Wang, Y Ji, Y Qi
Proceedings of the AAAI Conference on Artificial Intelligence 37 (11), 13528 …, 2023
52023
Transfer learning with motiftrans-formers for predicting protein-protein interactions between a novel virus and humans
J Lanchantin, A Sekhon, C Miller, Y Qi
BioRxiv 36, i659-i667, 2020
42020
White-box Testing of NLP models with Mask Neuron Coverage
A Sekhon, Y Ji, MB Dwyer, Y Qi
arXiv preprint arXiv:2205.05050, 2022
22022
Relate and Predict: Structure-Aware Prediction with Jointly Optimized Neural DAG
A Sekhon, Z Wang, Y Qi
arXiv preprint arXiv:2103.02405, 2021
12021
Beyond Data Samples: Aligning Differential Networks Estimation with Scientific Knowledge
A Sekhon, Z Wang, Y Qi
International Conference on Artificial Intelligence and Statistics, 10881-10923, 2022
2022
Differential Network Learning Beyond Data Samples.
A Sekhon, B Wang, Z Wang, Y Qi
CoRR, 2020
2020
Adding Extra Knowledge in Scalable Learning of Sparse Differential Gaussian Graphical Models
A Sekhon, B Wang, Y Qi
bioRxiv, 716852, 2019
2019
JointNets: an End-to-end R package for sparse Gaussian graphical model
Z Wang, B Wang, A Sekhon, Y Qi
2019
Il sistema al momento non può eseguire l'operazione. Riprova più tardi.
Articoli 1–20