Segui
David Eigen
David Eigen
Affiliazione sconosciuta
Email verificata su deigen.net
Titolo
Citata da
Citata da
Anno
Overfeat: Integrated Recognition, Localization and Detection Using Convolutional networks
P Sermanet
arXiv preprint arXiv:1312.6229, 2013
78882013
Depth map prediction from a single image using a multi-scale deep network
D Eigen, C Puhrsch, R Fergus
Advances in neural information processing systems 27, 2014
48172014
Predicting depth, surface normals and semantic labels with a common multi-scale convolutional architecture
D Eigen, R Fergus
Proceedings of the IEEE international conference on computer vision, 2650-2658, 2015
34002015
Restoring an image taken through a window covered with dirt or rain
D Eigen, D Krishnan, R Fergus
Proceedings of the IEEE international conference on computer vision, 633-640, 2013
5482013
Finding task-relevant features for few-shot learning by category traversal
H Li, D Eigen, S Dodge, M Zeiler, X Wang
Proceedings of the IEEE/CVF conference on computer vision and pattern …, 2019
4472019
Learning factored representations in a deep mixture of experts
D Eigen, MA Ranzato, I Sutskever
arXiv preprint arXiv:1312.4314, 2013
3632013
Overfeat: Integrated recognition, localization and detection using convolutional networks. arXiv 2013
P Sermanet, D Eigen, X Zhang, M Mathieu, R Fergus, Y LeCun
arXiv preprint arXiv:1312.6229, 0
203
Unsupervised learning of spatiotemporally coherent metrics
R Goroshin, J Bruna, J Tompson, D Eigen, Y LeCun
Proceedings of the IEEE international conference on computer vision, 4086-4093, 2015
1882015
Understanding deep architectures using a recursive convolutional network
D Eigen, J Rolfe, R Fergus, Y LeCun
arXiv preprint arXiv:1312.1847, 2013
1802013
End-to-end integration of a convolution network, deformable parts model and non-maximum suppression
L Wan, D Eigen, R Fergus
Proceedings of the IEEE Conference on Computer Vision and Pattern …, 2015
1142015
Nonparametric image parsing using adaptive neighbor sets
D Eigen, R Fergus
2012 IEEE Conference on Computer Vision and Pattern Recognition, 2799-2806, 2012
1052012
Unsupervised feature learning from temporal data
R Goroshin, J Bruna, J Tompson, D Eigen, Y LeCun
arXiv preprint arXiv:1504.02518, 2015
472015
Prediction-model-based mapping and/or search using a multi-data-type vector space
M Zeiler, D Eigen, R Compton, C Fox
US Patent 11,281,962, 2022
172022
Coarse2Fine: a two-stage training method for fine-grained visual classification
AE Eshratifar, D Eigen, M Gormish, M Pedram
Machine Vision and Applications 32 (2), 49, 2021
162021
Gradient agreement as an optimization objective for meta-learning
AE Eshratifar, D Eigen, M Pedram
arXiv preprint arXiv:1810.08178, 2018
152018
System, method and computer-accessible medium for restoring an image taken through a window
R Fergus, D Eigen, D Krishnan
US Patent 9,373,160, 2016
152016
System and method for facilitating logo-recognition training of a recognition model
DJ Eigen, M Zeiler
US Patent 10,163,043, 2018
142018
Method and apparatus for generating dynamic microcores
DJ Eigen, DA Grunwald
US Patent 7,783,932, 2010
142010
A meta-learning approach for custom model training
AE Eshratifar, MS Abrishami, D Eigen, M Pedram
Proceedings of the AAAI Conference on Artificial Intelligence 33 (01), 9937-9938, 2019
82019
Efficient training of deep convolutional neural networks by augmentation in embedding space
MS Abrishami, AE Eshratifar, D Eigen, Y Wang, S Nazarian, M Pedram
2020 21st International Symposium on Quality Electronic Design (ISQED), 347-351, 2020
62020
Il sistema al momento non può eseguire l'operazione. Riprova più tardi.
Articoli 1–20