A neural network multigrid solver for the Navier-Stokes equations N Margenberg, D Hartmann, C Lessig, T Richter Journal of Computational Physics 460, 110983, 2022 | 45 | 2022 |
Structure preservation for the deep neural network multigrid solver N Margenberg, C Lessig, T Richter arXiv preprint arXiv:2012.05290, 2020 | 12 | 2020 |
Parallel time-stepping for fluid–structure interactions N Margenberg, T Richter Mathematical Modelling of Natural Phenomena 16, 20, 2021 | 7 | 2021 |
DNN-MG: A hybrid neural network/finite element method with applications to 3D simulations of the Navier–Stokes equations N Margenberg, R Jendersie, C Lessig, T Richter Computer Methods in Applied Mechanics and Engineering 420, 116692, 2024 | 6 | 2024 |
Optimal Dirichlet boundary control by Fourier neural operators applied to nonlinear optics N Margenberg, FX Kärtner, M Bause Journal of Computational Physics 499, 112725, 2024 | 6 | 2024 |
An energy-efficient GMRES-Multigrid solver for space-time finite element computation of dynamic poro-and thermoelasticity M Anselmann, M Bause, N Margenberg, P Shamko arXiv preprint arXiv:2303.06742, 2023 | 5 | 2023 |
Deep neural networks for geometric multigrid methods N Margenberg, R Jendersie, T Richter, C Lessig arXiv preprint arXiv:2106.07687, 2021 | 3 | 2021 |
An energy-efficient GMRES–multigrid solver for space-time finite element computation of dynamic poroelasticity M Anselmann, M Bause, N Margenberg, P Shamko Computational Mechanics, 1-24, 2024 | 2 | 2024 |
Benchmark computations of dynamic poroelasticity M Anselmann, M Bause, N Margenberg, P Shamko PAMM 23 (2), e202300096, 2023 | 2 | 2023 |
Accurate simulation of THz generation with finite-element time domain methods N Margenberg, FX Kärtner, M Bause Optics Express 31 (16), 25915-25932, 2023 | 2 | 2023 |
The neural network multigrid solver for the Navier-Stokes equations and its application to 3D simulation N Margenberg, R Jendersie, CL Lessig, TR Richter ECCOMAS Congress 2022-8th European Congress on Computational Methods in …, 0 | 1 | |
Biot’s poro-elasticity system with dynamic permeability convolution: Well-posedness for evolutionary form JS Stokke, M Bause, N Margenberg, FA Radu Applied Mathematics Letters 158, 109224, 2024 | | 2024 |
A Space-Time Multigrid Method for Space-Time Finite Element Discretizations of Parabolic and Hyperbolic PDEs N Margenberg, P Munch arXiv preprint arXiv:2408.04372, 2024 | | 2024 |
The Biot-Allard poro-elasticity system: equivalent forms and well-posedness JS Stokke, M Bause, N Margenberg, FA Radu arXiv preprint arXiv:2406.01184, 2024 | | 2024 |
Ultrabroadband Simulation of Nonlinear Optical Processes with Finite Element Time Domain Methods N Margenberg, FX Kärtner, M Bause CLEO: Applications and Technology, JTu3B. 3, 2022 | | 2022 |
Optimal Control in Nonlinear Optics by Hybrid Finite Element and Neural Network Techniques N Margenberg | | |
CEDYA 2024-Communication proposal Section: M09 M Anselmann, M Bause, N Margenberg | | |
Hybrid Finite Element/Neural Network Simulations R Jendersie, U Kapustsin, U Kaya, C Lessig, N Margenberg, D Hartmann | | |