Segui
Nils Margenberg
Titolo
Citata da
Citata da
Anno
A neural network multigrid solver for the Navier-Stokes equations
N Margenberg, D Hartmann, C Lessig, T Richter
Journal of Computational Physics 460, 110983, 2022
452022
Structure preservation for the deep neural network multigrid solver
N Margenberg, C Lessig, T Richter
arXiv preprint arXiv:2012.05290, 2020
122020
Parallel time-stepping for fluid–structure interactions
N Margenberg, T Richter
Mathematical Modelling of Natural Phenomena 16, 20, 2021
72021
DNN-MG: A hybrid neural network/finite element method with applications to 3D simulations of the Navier–Stokes equations
N Margenberg, R Jendersie, C Lessig, T Richter
Computer Methods in Applied Mechanics and Engineering 420, 116692, 2024
62024
Optimal Dirichlet boundary control by Fourier neural operators applied to nonlinear optics
N Margenberg, FX Kärtner, M Bause
Journal of Computational Physics 499, 112725, 2024
62024
An energy-efficient GMRES-Multigrid solver for space-time finite element computation of dynamic poro-and thermoelasticity
M Anselmann, M Bause, N Margenberg, P Shamko
arXiv preprint arXiv:2303.06742, 2023
52023
Deep neural networks for geometric multigrid methods
N Margenberg, R Jendersie, T Richter, C Lessig
arXiv preprint arXiv:2106.07687, 2021
32021
An energy-efficient GMRES–multigrid solver for space-time finite element computation of dynamic poroelasticity
M Anselmann, M Bause, N Margenberg, P Shamko
Computational Mechanics, 1-24, 2024
22024
Benchmark computations of dynamic poroelasticity
M Anselmann, M Bause, N Margenberg, P Shamko
PAMM 23 (2), e202300096, 2023
22023
Accurate simulation of THz generation with finite-element time domain methods
N Margenberg, FX Kärtner, M Bause
Optics Express 31 (16), 25915-25932, 2023
22023
The neural network multigrid solver for the Navier-Stokes equations and its application to 3D simulation
N Margenberg, R Jendersie, CL Lessig, TR Richter
ECCOMAS Congress 2022-8th European Congress on Computational Methods in …, 0
1
Biot’s poro-elasticity system with dynamic permeability convolution: Well-posedness for evolutionary form
JS Stokke, M Bause, N Margenberg, FA Radu
Applied Mathematics Letters 158, 109224, 2024
2024
A Space-Time Multigrid Method for Space-Time Finite Element Discretizations of Parabolic and Hyperbolic PDEs
N Margenberg, P Munch
arXiv preprint arXiv:2408.04372, 2024
2024
The Biot-Allard poro-elasticity system: equivalent forms and well-posedness
JS Stokke, M Bause, N Margenberg, FA Radu
arXiv preprint arXiv:2406.01184, 2024
2024
Ultrabroadband Simulation of Nonlinear Optical Processes with Finite Element Time Domain Methods
N Margenberg, FX Kärtner, M Bause
CLEO: Applications and Technology, JTu3B. 3, 2022
2022
Optimal Control in Nonlinear Optics by Hybrid Finite Element and Neural Network Techniques
N Margenberg
CEDYA 2024-Communication proposal Section: M09
M Anselmann, M Bause, N Margenberg
Hybrid Finite Element/Neural Network Simulations
R Jendersie, U Kapustsin, U Kaya, C Lessig, N Margenberg, D Hartmann
Il sistema al momento non può eseguire l'operazione. Riprova più tardi.
Articoli 1–18