Segui
Krish Muralidhar
Krish Muralidhar
Email verificata su ou.edu
Titolo
Citata da
Citata da
Anno
An empirical investigation of the relationship between change in corporate social performance and financial performance: A stakeholder theory perspective
BM Ruf, K Muralidhar, RM Brown, JJ Janney, K Paul
Journal of business ethics 32, 143-156, 2001
17312001
The development of a systematic, aggregate measure of corporate social performance
BM Ruf, K Muralidhar, K Paul
Journal of management 24 (1), 119-133, 1998
3681998
A general additive data perturbation method for database security
K Muralidhar, R Parsa, R Sarathy
management science 45 (10), 1399-1415, 1999
2481999
Data shuffling—A new masking approach for numerical data
K Muralidhar, R Sarathy
Management Science 52 (5), 658-670, 2006
2132006
Evaluating Laplace noise addition to satisfy differential privacy for numeric data.
R Sarathy, K Muralidhar
Trans. Data Priv. 4 (1), 1-17, 2011
2082011
Using the analytic hierarchy process for information system project selection
K Muralidhar, R Santhanam, RL Wilson
Information & Management 18 (2), 87-95, 1990
2031990
Fool's gold: an illustrated critique of differential privacy
J Bambauer, K Muralidhar, R Sarathy
Vand. J. Ent. & Tech. L. 16, 701, 2013
1132013
Security of random data perturbation methods
K Muralidhar, R Sarathy
ACM Transactions on Database Systems (TODS) 24 (4), 487-493, 1999
1091999
Accessibility, security, and accuracy in statistical databases: The case for the multiplicative fixed data perturbation approach
K Muralidhar, D Batra, PJ Kirs
Management Science 41 (9), 1549-1564, 1995
961995
A theoretical basis for perturbation methods
K Muralidhar, R Sarathy
Statistics and Computing 13, 329-335, 2003
762003
The security of confidential numerical data in databases
R Sarathy, K Muralidhar
information systems research 13 (4), 389-403, 2002
732002
A zero-one goal programming approach for information system project selection
R Santhanam, K Muralidhar, M Schniederjans
Omega 17 (6), 583-593, 1989
671989
A Critical Review on the Use (and Misuse) of Differential Privacy in Machine Learning
KM Alberto Blanco-Justicia , David Sánchez , Josep Domingo-Ferrer
ACM Computing Surveys 55 (8), 1-16, 2022
652022
New directions in anonymization: permutation paradigm, verifiability by subjects and intruders, transparency to users
J Domingo-Ferrer, K Muralidhar
Information Sciences 337, 11-24, 2016
632016
Perturbing nonnormal confidential attributes: The copula approach
R Sarathy, K Muralidhar, R Parsa
Management Science 48 (12), 1613-1627, 2002
622002
Secure and useful data sharing
R Sarathy, K Muralidhar
Decision Support Systems 42 (1), 204-220, 2006
582006
Eight Dimensions of Corporate Social Performance: Determination of Relative Importance Using the Analytic Hierarchy Process.
B Ruf, K Muralidhar, K Paul
Academy of Management proceedings 1993 (1), 326-330, 1993
581993
Describing processing time when simulating JIT environments
K Muralidhar, SR SWENSETHJ, RL Wilson
THE INTERNATIONAL JOURNAL OF PRODUCTION RESEARCH 30 (1), 1-11, 1992
571992
Privacy in statistical databases
J Domingo-Ferrer, Y Saygin
Springer, 2008
512008
Some additional insights on applying differential privacy for numeric data
R Sarathy, K Muralidhar
Privacy in Statistical Databases: UNESCO Chair in Data Privacy …, 2010
492010
Il sistema al momento non può eseguire l'operazione. Riprova più tardi.
Articoli 1–20