Segui
Ramon Matas
Ramon Matas
Principal engineer @ nvidia
Email verificata su nvidia.com
Titolo
Citata da
Citata da
Anno
Federated learning based on dynamic regularization
DAE Acar, Y Zhao, RM Navarro, M Mattina, PN Whatmough, V Saligrama
arXiv preprint arXiv:2111.04263, 2021
8362021
Micronets: Neural network architectures for deploying tinyml applications on commodity microcontrollers
C Banbury, C Zhou, I Fedorov, RM Navarro, U Thakker, D Gope, VJ Reddi, ...
arXiv preprint arXiv:2010.11267, 2020
2722020
Debiasing model updates for improving personalized federated training
DAE Acar, Y Zhao, R Zhu, R Matas, M Mattina, P Whatmough, ...
International conference on machine learning, 21-31, 2021
762021
Apparatus and method for partitioning a shared cache of a chip multi-processor
M Mattina, A Juan-Hormigo, J Emer, R Matas-Navarro
US Patent 7,558,920, 2009
512009
Federated learning based on dynamic regularization
AE Durmus, Z Yue, M Ramon, M Matthew, W Paul, S Venkatesh
International conference on learning representations, 2021
472021
Collapsible linear blocks for super-efficient super resolution
K Bhardwaj, M Milosavljevic, L O'Neil, D Gope, R Matas, A Chalfin, ...
Proceedings of machine learning and systems 4, 529-547, 2022
412022
Boot strap processor assignment for a multi-core processing unit
SS Chang, A Thakur, R Sundararaman, R Matas, JS Lawlor, RF Netting
US Patent 9,658,861, 2017
222017
Performing memory accesses using memory context information
R Matas
US Patent 8,521,944, 2013
212013
Simulating a chip multiprocessor with a symmetric multiprocessor
KC Barr, R Matas-Navarro, C Weaver, T Juan, J Emer
Boston Area Architecture Workshop, 2005
182005
UDC: Unified DNAS for compressible TinyML models
I Fedorov, R Matas, H Tann, C Zhou, M Mattina, P Whatmough
arXiv preprint arXiv:2201.05842, 2022
142022
Udc: Unified dnas for compressible tinyml models for neural processing units
I Fedorov, R Matas, H Tann, C Zhou, M Mattina, P Whatmough
Advances in Neural Information Processing Systems 35, 18456-18471, 2022
122022
Stateless capture of data linear addresses during precise event based sampling
R Gramunt, R Matas, BC Chaffin, NS Moyer, R Padmanabhan, AP Suprun, ...
US Patent 9,652,237, 2017
92017
Perfsage: Generalized inference performance predictor for arbitrary deep learning models on edge devices
Y Chai, D Tripathy, C Zhou, D Gope, I Fedorov, R Matas, D Brooks, ...
arXiv preprint arXiv:2301.10999, 2023
52023
Dynamic partitioning of execution resources
JF Duluk Jr, L Durant, RM Navarro, A Menezes, J Tuckey, G Hirota, ...
US Patent 11,307,903, 2022
42022
Federated learning based on dynamic regularization
V Saligrama, DAE Acar, PN Whatmough, R Matas, M Mattina, Y Zhao
32022
Dynamic partitioning of execution resources
JF Duluk Jr, L Durant, RM Navarro, A Menezes, J Tuckey, G Hirota, ...
US Patent 10,817,338, 2020
22020
Scalable event handling in multi-threaded processor cores
R Gramunt, R Padmanabhan, R Matas, NS Moyer, BC Chaffin, A Sodani, ...
US Patent 9,886,396, 2018
22018
Initialization of multi-core processing system
SS Chang, A Thakur, RC Sundararaman, R Matas
US Patent 9,367,329, 2016
22016
Stateless capture of data linear addresses during precise event based sampling
R Gramunt, R Matas, BC Chaffin, NS Moyer, R Padmanabhan, AP Suprun, ...
US Patent 10,175,986, 2019
12019
Method and apparatus to share modified data without write-back in a shared-memory many-core system
R Sundararaman, JC Mejia, OM Rosell, J Antonio, R Matas
US Patent App. 13/731,584, 2014
12014
Il sistema al momento non può eseguire l'operazione. Riprova più tardi.
Articoli 1–20