A phase field approach in the numerical study of the elastic bending energy for vesicle membranes Q Du, C Liu, X Wang Journal of Computational Physics 198 (2), 450-468, 2004 | 485 | 2004 |
Simulating the deformation of vesicle membranes under elastic bending energy in three dimensions Q Du, C Liu, X Wang Journal of computational physics 212 (2), 757-777, 2006 | 345 | 2006 |
Modelling and simulations of multi-component lipid membranes and open membranes via diffuse interface approaches X Wang, Q Du Journal of mathematical biology 56 (3), 347-371, 2008 | 226 | 2008 |
A phase field formulation of the Willmore problem Q Du, C Liu, R Ryham, X Wang Nonlinearity 18 (3), 1249, 2005 | 210 | 2005 |
VCells: Simple and efficient superpixels using edge-weighted centroidal Voronoi tessellations J Wang, X Wang IEEE Transactions on pattern analysis and machine intelligence 34 (6), 1241-1247, 2012 | 140 | 2012 |
An edge-weighted centroidal Voronoi tessellation model for image segmentation J Wang, L Ju, X Wang IEEE Transactions on Image Processing 18 (8), 1844-1858, 2009 | 114 | 2009 |
Energetic variational approaches in modeling vesicle and fluid interactions Q Du, C Liu, R Ryham, X Wang Physica D: Nonlinear Phenomena 238 (9-10), 923-930, 2009 | 108 | 2009 |
Retrieving topological information for phase field models Q Du, C Liu, X Wang SIAM Journal on Applied Mathematics 65 (6), 1913-1932, 2005 | 96 | 2005 |
Efficient and stable exponential time differencing Runge–Kutta methods for phase field elastic bending energy models X Wang, L Ju, Q Du Journal of Computational Physics 316, 21-38, 2016 | 88 | 2016 |
Centroidal Voronoi tessellation algorithms for image compression, segmentation, and multichannel restoration Q Du, M Gunzburger, L Ju, X Wang Journal of Mathematical Imaging and Vision 24, 177-194, 2006 | 81 | 2006 |
Modeling the spontaneous curvature effects in static cell membrane deformations by a phase field formulation Q Du, C Liu, R Ryham, X Wang energy 7, 8, 2005 | 72 | 2005 |
Centroidal Voronoi tessellation based algorithms for vector fields visualization and segmentation Q Du, X Wang IEEE Visualization 2004, 43-50, 2004 | 65 | 2004 |
Asymptotic analysis of phase field formulations of bending elasticity models X Wang SIAM journal on mathematical analysis 39 (5), 1367-1401, 2008 | 49 | 2008 |
Convergence of numerical approximations to a phase field bending elasticity model of membrane deformations Q Du, X Wang | 36 | 2006 |
Phase field modeling of the spontaneous curvature effect in cell membranes Q Du, C Liu, R Ryham, X Wang Comm Pure Appl Anal 4, 537-548, 2005 | 34 | 2005 |
A two phase field model for tracking vesicle–vesicle adhesion R Gu, X Wang, M Gunzburger Journal of mathematical biology 73, 1293-1319, 2016 | 28 | 2016 |
Image segmentation using local variation and edge-weighted centroidal Voronoi tessellations J Wang, L Ju, X Wang IEEE Transactions on Image Processing 20 (11), 3242-3256, 2011 | 28 | 2011 |
Diffuse interface energies capturing the Euler number: Relaxation and renomalization Q Du, C Liu, R Ryham, X Wang | 26 | 2007 |
Simulating vesicle–substrate adhesion using two phase field functions R Gu, X Wang, M Gunzburger Journal of Computational Physics 275, 626-641, 2014 | 25 | 2014 |
Phase field models and simulations of vesicle bio-membranes X Wang The Pennsylvania State University, 2005 | 21 | 2005 |