From fidelity to perceptual quality: A semi-supervised approach for low-light image enhancement W Yang, S Wang, Y Fang, Y Wang, J Liu Proceedings of the IEEE/CVF conference on computer vision and pattern …, 2020 | 539 | 2020 |
No-reference quality assessment of contrast-distorted images based on natural scene statistics Y Fang, K Ma, Z Wang, W Lin, Z Fang, G Zhai IEEE Signal Processing Letters 22 (7), 838-842, 2014 | 372 | 2014 |
Saliency detection in the compressed domain for adaptive image retargeting Y Fang, Z Chen, W Lin, CW Lin IEEE Transactions on Image Processing 21 (9), 3888-3901, 2012 | 364 | 2012 |
Perceptual quality assessment of smartphone photography Y Fang, H Zhu, Y Zeng, K Ma, Z Wang Proceedings of the IEEE/CVF conference on computer vision and pattern …, 2020 | 343 | 2020 |
A video saliency detection model in compressed domain Y Fang, W Lin, Z Chen, CM Tsai, CW Lin IEEE transactions on circuits and systems for video technology 24 (1), 27-38, 2013 | 269 | 2013 |
A saliency detection model using low-level features based on wavelet transform N Imamoglu, W Lin, Y Fang IEEE transactions on multimedia 15 (1), 96-105, 2012 | 265 | 2012 |
Single image deraining: From model-based to data-driven and beyond W Yang, RT Tan, S Wang, Y Fang, J Liu IEEE Transactions on pattern analysis and machine intelligence 43 (11), 4059 …, 2020 | 263 | 2020 |
No-reference quality assessment for multiply-distorted images in gradient domain Q Li, W Lin, Y Fang IEEE Signal Processing Letters 23 (4), 541-545, 2016 | 246 | 2016 |
Perceptual quality assessment of screen content images H Yang, Y Fang, W Lin IEEE Transactions on Image Processing 24 (11), 4408-4421, 2015 | 246 | 2015 |
Video saliency incorporating spatiotemporal cues and uncertainty weighting Y Fang, Z Wang, W Lin, Z Fang IEEE transactions on image processing 23 (9), 3910-3921, 2014 | 242 | 2014 |
Dense attention fluid network for salient object detection in optical remote sensing images Q Zhang, R Cong, C Li, MM Cheng, Y Fang, X Cao, Y Zhao, S Kwong IEEE Transactions on Image Processing 30, 1305-1317, 2020 | 230 | 2020 |
Saliency-based defect detection in industrial images by using phase spectrum X Bai, Y Fang, W Lin, L Wang, BF Ju IEEE Transactions on Industrial Informatics 10 (4), 2135-2145, 2014 | 219 | 2014 |
Saliency detection for stereoscopic images Y Fang, J Wang, M Narwaria, P Le Callet, W Lin IEEE Transactions on Image Processing 23 (6), 2625-2636, 2014 | 200 | 2014 |
Blind image quality assessment using statistical structural and luminance features Q Li, W Lin, J Xu, Y Fang IEEE Transactions on Multimedia 18 (12), 2457-2469, 2016 | 193 | 2016 |
Bottom-up saliency detection model based on human visual sensitivity and amplitude spectrum Y Fang, W Lin, BS Lee, CT Lau, Z Chen, CW Lin IEEE Transactions on Multimedia 14 (1), 187-198, 2011 | 186 | 2011 |
Weakly supervised video anomaly detection via center-guided discriminative learning B Wan, Y Fang, X Xia, J Mei 2020 IEEE international conference on multimedia and expo (ICME), 1-6, 2020 | 177 | 2020 |
Deep guided learning for fast multi-exposure image fusion K Ma, Z Duanmu, H Zhu, Y Fang, Z Wang IEEE Transactions on Image Processing 29, 2808-2819, 2019 | 175 | 2019 |
No-reference and robust image sharpness evaluation based on multiscale spatial and spectral features L Li, W Xia, W Lin, Y Fang, S Wang IEEE Transactions on Multimedia 19 (5), 1030-1040, 2016 | 144 | 2016 |
Objective quality assessment for image retargeting based on structural similarity Y Fang, K Zeng, Z Wang, W Lin, Z Fang, CW Lin IEEE Journal on Emerging and Selected Topics in Circuits and Systems 4 (1 …, 2014 | 137 | 2014 |
Band representation-based semi-supervised low-light image enhancement: Bridging the gap between signal fidelity and perceptual quality W Yang, S Wang, Y Fang, Y Wang, J Liu IEEE Transactions on Image Processing 30, 3461-3473, 2021 | 131 | 2021 |