Posterior sampling based on gradient flows of the MMD with negative distance kernel P Hagemann, J Hertrich, F Altekrüger, R Beinert, J Chemseddine, G Steidl arXiv preprint arXiv:2310.03054, 2023 | 25 | 2023 |
Conditional wasserstein distances with applications in bayesian ot flow matching J Chemseddine, P Hagemann, G Steidl, C Wald arXiv preprint arXiv:2403.18705, 2024 | 10 | 2024 |
Y-Diagonal couplings: Approximating posteriors with conditional Wasserstein distances J Chemseddine, P Hagemann, C Wald arXiv preprint arXiv:2310.13433, 2023 | 3 | 2023 |
Neural sampling from Boltzmann densities: Fisher-Rao curves in the Wasserstein geometry J Chemseddine, C Wald, R Duong, G Steidl arXiv preprint arXiv:2410.03282, 2024 | 2 | 2024 |
Generative Modeling via Wasserstein Gradient flows of Maximum Mean Discrepancies P Hagemann, F Altekrüger, R Beinert, J Chemseddine, M Gräf, ... | | |