Articoli con mandati relativi all'accesso pubblico - Matthias HY TanUlteriori informazioni
Non disponibili pubblicamente: 2
Wind Turbine Modeling with Data-driven Methods and Radially Uniform Designs
M Tan, Z Zhang
IEEE Transactions on Industrial Informatics, 2016
Mandati: Research Grants Council, Hong Kong
Optimal robust and tolerance design for computer experiments with mixture proportion inputs
M Han, MHY Tan
Quality and Reliability Engineering International 33 (8), 2255-2267, 2017
Mandati: Research Grants Council, Hong Kong
Disponibili pubblicamente: 22
Integrated parameter and tolerance design with computer experiments
M Han, MH Yong Tan
IIE Transactions 48 (11), 1004-1015, 2016
Mandati: National Natural Science Foundation of China, Research Grants Council, Hong Kong
Gaussian process modeling with boundary information
MHY Tan
Statistica Sinica, 621-648, 2018
Mandati: Research Grants Council, Hong Kong
Gaussian process modeling of a functional output with information from boundary and initial conditions and analytical approximations
MHY Tan
Technometrics 60 (2), 209-221, 2018
Mandati: Research Grants Council, Hong Kong
Monotonic quantile regression with Bernstein polynomials for stochastic simulation
MHY Tan
Technometrics 58 (2), 180-190, 2016
Mandati: Research Grants Council, Hong Kong
Stochastic polynomial interpolation for uncertainty quantification with computer experiments
MHY Tan
Technometrics 57 (4), 457-467, 2015
Mandati: Research Grants Council, Hong Kong
Robust Parameter Design with Computer Experiments Using Orthonormal Polynomials
MHY Tan
Technometrics, 2015
Mandati: Research Grants Council, Hong Kong
Bayesian optimization of expected quadratic loss for multiresponse computer experiments with internal noise
MHY Tan
SIAM/ASA Journal on Uncertainty Quantification 8 (3), 891-925, 2020
Mandati: Research Grants Council, Hong Kong
A Gaussian process emulator based approach for Bayesian calibration of a functional input
Z Li, MHY Tan
Technometrics 64 (3), 299-311, 2022
Mandati: Research Grants Council, Hong Kong
Integrated parameter and tolerance optimization of a centrifugal compressor based on a complex simulator
M Han, X Liu, M Huang, MHY Tan
Journal of Quality Technology 52 (4), 404-421, 2020
Mandati: National Natural Science Foundation of China, Research Grants Council, Hong Kong
Metamodel-based optimization of stochastic computer models for engineering design under uncertain objective function
G Li, M Hwai-yong Tan, S Hui Ng
IISE Transactions 51 (5), 517-530, 2019
Mandati: Research Grants Council, Hong Kong
Sequential Bayesian Polynomial Chaos Model Selection for Estimation of Sensitivity Indices
MHY Tan
SIAM/ASA Journal on Uncertainty Quantification 3 (1), 146-168, 2015
Mandati: Research Grants Council, Hong Kong
Gaussian process modeling of finite element models with functional inputs
MHY Tan
SIAM/ASA Journal on Uncertainty Quantification 7 (4), 1133-1161, 2019
Mandati: Research Grants Council, Hong Kong
ANOVA-MOP: ANOVA decomposition for multiobjective optimization
M Tabatabaei, A Lovison, M Tan, M Hartikainen, K Miettinen
SIAM Journal on Optimization 28 (4), 3260-3289, 2018
Mandati: Academy of Finland, Research Grants Council, Hong Kong
Monotonic metamodels for deterministic computer experiments
MHY Tan
Technometrics 59 (1), 1-10, 2017
Mandati: Research Grants Council, Hong Kong
Multiple-target robust design with multiple functional outputs
F Jiang, MHY Tan, KL Tsui
IISE Transactions 53 (9), 1052-1066, 2021
Mandati: Research Grants Council, Hong Kong
Gaussian process modeling using the principle of superposition
MHY Tan, G Li
Technometrics, 2019
Mandati: Research Grants Council, Hong Kong
Nonparametric link functions with shape constraints in stochastic degradation processes: Application to emerging contaminants
L Hong, MHY Tan, ZS Ye
Journal of Quality Technology 52 (4), 370-384, 2020
Mandati: National Natural Science Foundation of China, Research Grants Council, Hong …
Shifted log loss Gaussian process model for expected quality loss prediction in robust parameter design
F Jiang, MHY Tan
Quality Technology & Quantitative Management 18 (5), 527-551, 2021
Mandati: Research Grants Council, Hong Kong
Le informazioni sulla pubblicazione e sul finanziamento vengono stabilite automaticamente da un software