Identifying the best machine learning algorithms for brain tumor segmentation, progression assessment, and overall survival prediction in the BRATS challenge S Bakas, M Reyes, A Jakab, S Bauer, M Rempfler, A Crimi, RT Shinohara, ... arXiv preprint arXiv:1811.02629, 2018 | 2052 | 2018 |
Review of causal discovery methods based on graphical models C Glymour, K Zhang, P Spirtes Frontiers in genetics 10, 524, 2019 | 1015 | 2019 |
Deep domain generalization via conditional invariant adversarial networks Y Li, X Tian, M Gong, Y Liu, T Liu, K Zhang, D Tao Proceedings of the European conference on computer vision (ECCV), 624-639, 2018 | 804 | 2018 |
Inferring causation from time series in Earth system sciences J Runge, S Bathiany, E Bollt, G Camps-Valls, D Coumou, E Deyle, ... Nature communications 10 (1), 2553, 2019 | 785 | 2019 |
Domain adaptation under target and conditional shift K Zhang, B Schölkopf, K Muandet, Z Wang International conference on machine learning, 819-827, 2013 | 762 | 2013 |
Kernel-based conditional independence test and application in causal discovery K Zhang, J Peters, D Janzing, B Schölkopf arXiv preprint arXiv:1202.3775, 2012 | 720 | 2012 |
On causal and anticausal learning B Schölkopf, D Janzing, J Peters, E Sgouritsa, K Zhang, J Mooij arXiv preprint arXiv:1206.6471, 2012 | 684 | 2012 |
On learning invariant representations for domain adaptation H Zhao, RT Des Combes, K Zhang, G Gordon International conference on machine learning, 7523-7532, 2019 | 676 | 2019 |
On the identifiability of the post-nonlinear causal model K Zhang, A Hyvarinen arXiv preprint arXiv:1205.2599, 2012 | 638 | 2012 |
Multi-label learning by exploiting label dependency ML Zhang, K Zhang Proceedings of the 16th ACM SIGKDD international conference on Knowledge …, 2010 | 587 | 2010 |
Estimation of a structural vector autoregression model using non-gaussianity. A Hyvärinen, K Zhang, S Shimizu, PO Hoyer Journal of Machine Learning Research 11 (5), 2010 | 449 | 2010 |
Causal discovery and inference: concepts and recent methodological advances P Spirtes, K Zhang Applied informatics 3, 1-28, 2016 | 426 | 2016 |
Domain adaptation with conditional transferable components M Gong, K Zhang, T Liu, D Tao, C Glymour, B Schölkopf International conference on machine learning, 2839-2848, 2016 | 409 | 2016 |
Information-geometric approach to inferring causal directions D Janzing, J Mooij, K Zhang, J Lemeire, J Zscheischler, P Daniušis, ... Artificial Intelligence 182, 1-31, 2012 | 365 | 2012 |
Geometry-consistent generative adversarial networks for one-sided unsupervised domain mapping H Fu, M Gong, C Wang, K Batmanghelich, K Zhang, D Tao Proceedings of the IEEE/CVF conference on computer vision and pattern …, 2019 | 249 | 2019 |
Causal discovery from heterogeneous/nonstationary data B Huang, K Zhang, J Zhang, J Ramsey, R Sanchez-Romero, C Glymour, ... Journal of Machine Learning Research 21 (89), 1-53, 2020 | 233 | 2020 |
Multi-source domain adaptation: A causal view K Zhang, M Gong, B Schölkopf Proceedings of the AAAI Conference on Artificial Intelligence 29 (1), 2015 | 220 | 2015 |
Inferring deterministic causal relations P Daniusis, D Janzing, J Mooij, J Zscheischler, B Steudel, K Zhang, ... arXiv preprint arXiv:1203.3475, 2012 | 218 | 2012 |
Approximate kernel-based conditional independence tests for fast non-parametric causal discovery EV Strobl, K Zhang, S Visweswaran Journal of Causal Inference 7 (1), 20180017, 2019 | 200 | 2019 |
On the role of sparsity and dag constraints for learning linear dags I Ng, AE Ghassami, K Zhang Advances in Neural Information Processing Systems 33, 17943-17954, 2020 | 198 | 2020 |