Segui
Gerben Beintema
Titolo
Citata da
Citata da
Anno
Controlling Rayleigh–Bénard convection via reinforcement learning
G Beintema, A Corbetta, L Biferale, F Toschi
Journal of Turbulence 21 (9-10), 585-605, 2020
1082020
Nonlinear state-space identification using deep encoder networks
G Beintema, R Toth, M Schoukens
Learning for dynamics and control, 241-250, 2021
622021
Deep subspace encoders for nonlinear system identification
GI Beintema, M Schoukens, R Tóth
Automatica 156, 111210, 2023
452023
Deep-learning-based identification of LPV models for nonlinear systems
C Verhoek, GI Beintema, S Haesaert, M Schoukens, R Tóth
2022 IEEE 61st Conference on Decision and Control (CDC), 3274-3280, 2022
212022
Deep identification of nonlinear systems in koopman form
LC Iacob, GI Beintema, M Schoukens, R Tóth
2021 60th IEEE Conference on Decision and Control (CDC), 2288-2293, 2021
212021
Continuous-time identification of dynamic state-space models by deep subspace encoding
GI Beintema, M Schoukens, R Tóth
arXiv preprint arXiv:2204.09405, 2022
202022
Non-linear state-space model identification from video data using deep encoders
GI Beintema, R Toth, M Schoukens
IFAC-PapersOnLine 54 (7), 697-701, 2021
172021
Identification of the nonlinear steering dynamics of an autonomous vehicle
G Rödönyi, GI Beintema, R Tóth, M Schoukens, D Pup, Á Kisari, Z Vígh, ...
IFAC-PapersOnLine 54 (7), 708-713, 2021
132021
Computationally efficient predictive control based on ANN state-space models
JH Hoekstra, B Cseppento, GI Beintema, M Schoukens, Z Kollár, R Tóth
2023 62nd IEEE Conference on Decision and Control (CDC), 6336-6341, 2023
62023
State derivative normalization for continuous-time deep neural networks
J Weigand, GI Beintema, J Ulmen, D Görges, R Tóth, M Schoukens, ...
IFAC-PapersOnLine 58 (15), 253-258, 2024
42024
NARX identification using derivative-based regularized neural networks
LH Peeters, GI Beintema, M Forgione, M Schoukens
2022 IEEE 61st Conference on Decision and Control (CDC), 1515-1520, 2022
42022
Data–driven Learning of Nonlinear Dynamic Systems: A Deep Neural State–Space Approach
GI Beintema
22024
Meta-state–space learning: An identification approach for stochastic dynamical systems
GI Beintema, M Schoukens, R Tóth
Automatica 167, 111787, 2024
12024
Output error port-hamiltonian neural networks: Cascaded tanks system with overflow
S Moradi, GI Beintema, NO Jaensson, R Tóth, M Schoukens
Workshop on Nonlinear System Identification Benchmarks, 2024
12024
Deep learning of vehicle dynamics
M Szécsi, B Györök, Á Weinhardt-Kovács, GI Beintema, M Schoukens, ...
IFAC-PapersOnLine 58 (15), 283-288, 2024
12024
Baseline Results for Selected Nonlinear System Identification Benchmarks
M Champneys, GI Beintema, R Tóth, M Schoukens, TJ Rogers
IFAC-PapersOnLine 58 (15), 474-479, 2024
12024
Learning-based augmentation of physics-based models: an industrial robot use case
A Retzler, R Tóth, M Schoukens, GI Beintema, J Weigand, JP Noël, ...
Data-Centric Engineering 5, e12, 2024
12024
Output error port-hamiltonian neural network
S Moradi, GI Beintema, NO Jaensson, R Tóth, M Schoukens
31st Workshop of the European Research Network on System Identification, 2023
12023
Meta-State-Space Learning: An Identification Approach for Stochastic Dynamical Systems
GI Beintema, M Schoukens, R Tóth
arXiv preprint arXiv:2307.06675, 2023
12023
Initialization Approach for Nonlinear State-Space Identification via the Subspace Encoder Approach
R Ramkannan, GI Beintema, R Tóth, M Schoukens
IFAC-PapersOnLine 56 (2), 5146-5151, 2023
12023
Il sistema al momento non può eseguire l'operazione. Riprova più tardi.
Articoli 1–20