Segui
Andy Liaw
Titolo
Citata da
Citata da
Anno
Classification and regression by randomForest
A Liaw
R news, 2002
267252002
Random forest: a classification and regression tool for compound classification and QSAR modeling
V Svetnik, A Liaw, C Tong, JC Culberson, RP Sheridan, BP Feuston
Journal of chemical information and computer sciences 43 (6), 1947-1958, 2003
38412003
gplots: Various R programming tools for plotting data
GR Warnes, B Bolker, L Bonebakker, R Gentleman, W Huber, A Liaw, ...
R package version 2 (4), 1, 2009
29362009
Newer classification and regression tree techniques: bagging and random forests for ecological prediction
AM Prasad, LR Iverson, A Liaw
Ecosystems 9, 181-199, 2006
26152006
Using random forest to learn imbalanced data
C Chen, A Liaw, L Breiman
University of California, Berkeley 110 (1-12), 24, 2004
19772004
Deep neural nets as a method for quantitative structure–activity relationships
J Ma, RP Sheridan, A Liaw, GE Dahl, V Svetnik
Journal of chemical information and modeling 55 (2), 263-274, 2015
13672015
gplots: various R programming tools for plotting data. R package version 2.17. 0
GR Warnes, B Bolker, L Bonebakker, R Gentleman, WHA Liaw, T Lumley, ...
Computer software, 2015
608*2015
Extreme gradient boosting as a method for quantitative structure–activity relationships
RP Sheridan, WM Wang, A Liaw, J Ma, EM Gifford
Journal of chemical information and modeling 56 (12), 2353-2360, 2016
4612016
Improved statistical methods for hit selection in high-throughput screening
C Brideau, B Gunter, B Pikounis, A Liaw
SLAS Discovery 8 (6), 634-647, 2003
4462003
Wiener M
A Liaw
Classification and regression by randomforest R News 2 (3), 18, 2002
3862002
Application of Breiman’s random forest to modeling structure-activity relationships of pharmaceutical molecules
V Svetnik, A Liaw, C Tong, T Wang
Multiple Classifier Systems: 5th International Workshop, MCS 2004, Cagliari …, 2004
3742004
Classification and regression by randomForest. R News 2 (3): 18–22
A Liaw, M Wiener
2682002
Package ‘randomforest’
A Liaw, M Wiener, L Breiman, A Cutler
2672015
Boosting: An ensemble learning tool for compound classification and QSAR modeling
V Svetnik, T Wang, C Tong, A Liaw, RP Sheridan, Q Song
Journal of chemical information and modeling 45 (3), 786-799, 2005
2552005
Demystifying multitask deep neural networks for quantitative structure–activity relationships
Y Xu, J Ma, A Liaw, RP Sheridan, V Svetnik
Journal of chemical information and modeling 57 (10), 2490-2504, 2017
2242017
Package ‘gplots’
MGR Warnes, B Bolker, L Bonebakker, R Gentleman, W Huber, A Liaw
Various R programming tools for plotting data, 112-119, 2016
2232016
Deep dive into machine learning models for protein engineering
Y Xu, D Verma, RP Sheridan, A Liaw, J Ma, NM Marshall, J McIntosh, ...
Journal of chemical information and modeling 60 (6), 2773-2790, 2020
2112020
Breiman and Cutler’s random forests for classification and regression
A Liaw, M Wiener
R package version, 2015
1632015
Package ‘randomforest’
L Breiman, A Cutler, A Liaw, M Wiener
University of California, Berkeley: Berkeley, CA, USA, 2018
1102018
The randomforest package
A Liaw, M Wiener
R news 2 (3), 18-22, 2002
1092002
Il sistema al momento non può eseguire l'operazione. Riprova più tardi.
Articoli 1–20