Modular Catalan numbers N Hein, J Huang European Journal of Combinatorics 61, 197-218, 2017 | 22 | 2017 |
The Secant Conjecture in the real Schubert calculus LD García-Puente, N Hein, C Hillar, AM Campo, J Ruffo, F Sottile, Z Teitler Experimental Mathematics 21 (3), 252-265, 2012 | 22 | 2012 |
Lower bounds in real Schubert calculus N Hein, CJ Hillar, F Sottile arXiv preprint arXiv:1308.4381, 2013 | 19 | 2013 |
A congruence modulo four in real Schubert calculus N Hein, F Sottile, I Zelenko Journal für die reine und angewandte Mathematik (Crelles Journal) 2016 (714 …, 2016 | 16 | 2016 |
Certification for polynomial systems via square subsystems T Duff, N Hein, F Sottile Journal of Symbolic Computation 109, 367-385, 2022 | 10 | 2022 |
Variations of the Catalan numbers from some nonassociative binary operations N Hein, J Huang Discrete Mathematics 345 (3), 112711, 2022 | 8 | 2022 |
A primal-dual formulation for certifiable computations in Schubert calculus JD Hauenstein, N Hein, F Sottile Foundations of Computational Mathematics 16 (4), 941-963, 2016 | 6 | 2016 |
Variations of the Catalan numbers from some nonassociative binary operations N Hein, J Huang arXiv preprint arXiv:1807.04623, 2018 | 5 | 2018 |
A lifted square formulation for certifiable Schubert calculus N Hein, F Sottile Journal of Symbolic Computation 79, 594-608, 2017 | 5 | 2017 |
Beyond the Shapiro conjecture and Eremenko–Gabrielov lower bounds N Hein, F Sottile Lower Bounds Experimental Project, available at http://www. math. tamu. edu …, 0 | 5 | |
The monotone secant conjecture in the real Schubert calculus N Hein, CJ Hillar, A Martín del Campo, F Sottile, Z Teitler Experimental Mathematics 24 (3), 261-269, 2015 | 3 | 2015 |
Certifiable numerical computations in Schubert calculus JD Hauenstein, N Hein, F Sottile arXiv preprint arXiv:1212.3315, 2012 | 3 | 2012 |
A congruence modulo four for real Schubert calculus with isotropic flags N Hein, F Sottile, I Zelenko Canadian Mathematical Bulletin 60 (2), 309-318, 2017 | 2 | 2017 |
The monotone secant conjecture in the real Schubert calculus JD Hauenstein, N Hein, C Hillar, AM del Campo, F Sottile, Z Teitler MEGA11, Stockholm, 2011 | 2 | 2011 |
Nonassociativity measurements of some binary operations N HEIN, JIA HUANG arXiv preprint arXiv:1807.04623, 2018 | 1 | 2018 |
The Secant Conjecture in the Real Schubert Calculus F Sottile, L Garcıa-Puente, C Hillar, J Ruffo, Z Teitler, N Hein, C Irving, ... Experi, 0 | 1 | |
The monotone secant conjecture in the real Schubert calculus N Hein, CJ Hillar, A Martín del Campo, F Sottile, Z Teitler Experimental Mathematics 24 (3), 261-269, 2015 | | 2015 |
Reality and Computation in Schubert Calculus N Hein arXiv preprint arXiv:1307.1833, 2013 | | 2013 |