Segui
Simon Batzner
Simon Batzner
Altri nomiSimon Lutz Batzner, Simon L Batzner, S Batzner
Google DeepMind
Email verificata su google.com - Home page
Titolo
Citata da
Citata da
Anno
E (3)-equivariant graph neural networks for data-efficient and accurate interatomic potentials
S Batzner, A Musaelian, L Sun, M Geiger, JP Mailoa, M Kornbluth, ...
Nature communications 13 (1), 2453, 2022
11402022
Scaling deep learning for materials discovery
A Merchant, S Batzner, SS Schoenholz, M Aykol, G Cheon, ED Cubuk
Nature 624 (7990), 80-85, 2023
4752023
Learning local equivariant representations for large-scale atomistic dynamics
A Musaelian, S Batzner, A Johansson, L Sun, CJ Owen, M Kornbluth, ...
Nature Communications 14 (1), 579, 2023
3822023
On-the-fly active learning of interpretable Bayesian force fields for atomistic rare events
J Vandermause, SB Torrisi, S Batzner, Y Xie, L Sun, AM Kolpak, ...
npj Computational Materials 6 (1), 20, 2020
3182020
The design space of e (3)-equivariant atom-centered interatomic potentials
I Batatia, S Batzner, DP Kovács, A Musaelian, GNC Simm, R Drautz, ...
arXiv preprint arXiv:2205.06643, 2022
1072022
A fast neural network approach for direct covariant forces prediction in complex multi-element extended systems
JP Mailoa, M Kornbluth, S Batzner, G Samsonidze, ST Lam, ...
Nature machine intelligence 1 (10), 471-479, 2019
552019
Scaling the leading accuracy of deep equivariant models to biomolecular simulations of realistic size
B Kozinsky, A Musaelian, A Johansson, S Batzner
Proceedings of the International Conference for High Performance Computing …, 2023
452023
Multitask machine learning of collective variables for enhanced sampling of rare events
L Sun, J Vandermause, S Batzner, Y Xie, D Clark, W Chen, B Kozinsky
Journal of Chemical Theory and Computation 18 (4), 2341-2353, 2022
402022
Fast uncertainty estimates in deep learning interatomic potentials
A Zhu, S Batzner, A Musaelian, B Kozinsky
The Journal of Chemical Physics 158 (16), 2023
332023
Advancing molecular simulation with equivariant interatomic potentials
S Batzner, A Musaelian, B Kozinsky
Nature Reviews Physics 5 (8), 437-438, 2023
242023
Euclidean neural networks: e3nn, 2020
M Geiger, T Smidt, M Alby, BK Miller, W Boomsma, B Dice, K Lapchevskyi, ...
URL https://doi. org/10.5281/zenodo 5292912, 0
16
Complexity of many-body interactions in transition metals via machine-learned force fields from the TM23 data set
CJ Owen, SB Torrisi, Y Xie, S Batzner, K Bystrom, J Coulter, A Musaelian, ...
npj Computational Materials 10 (1), 92, 2024
122024
Accurate Surface and Finite-Temperature Bulk Properties of Lithium Metal at Large Scales Using Machine Learning Interaction Potentials
MK Phuthi, AM Yao, S Batzner, A Musaelian, P Guan, B Kozinsky, ...
ACS omega 9 (9), 10904-10912, 2024
62024
Predicting emergence of crystals from amorphous matter with deep learning
M Aykol, A Merchant, S Batzner, JN Wei, ED Cubuk
arXiv preprint arXiv:2310.01117, 2023
52023
Transferability and accuracy of ionic liquid simulations with equivariant machine learning interatomic potentials
ZAH Goodwin, MB Wenny, JH Yang, A Cepellotti, J Ding, K Bystrom, ...
The Journal of Physical Chemistry Letters 15 (30), 7539-7547, 2024
32024
Biasing energy surfaces towards the unknown
S Batzner
Nature Computational Science 3 (3), 190-191, 2023
22023
Predicting Properties of Amorphous Solids with Graph Network Potentials
M Aykol, JN Wei, S Batzner, A Merchant, ED Cubuk
1st Workshop on the Synergy of Scientific and Machine Learning Modeling …, 2023
12023
Generative Hierarchical Materials Search
S Yang, S Batzner, R Gao, M Aykol, AL Gaunt, B McMorrow, DJ Rezende, ...
arXiv preprint arXiv:2409.06762, 2024
2024
Chemical Transferability and Accuracy of Ionic Liquid Simulations with Machine Learning Interatomic Potentials
ZAH Goodwin, MB Wenny, JH Yang, A Cepellotti, K Bystrom, ...
arXiv preprint arXiv:2403.01980, 2024
2024
Equivariant Deep Learning Interatomic Potentials
SL Batzner
2023
Il sistema al momento non può eseguire l'operazione. Riprova più tardi.
Articoli 1–20