Ikuti
Salvador García
Salvador García
Full Professor of Computer Science and Artificial Intelligence. University of Granada.
Email yang diverifikasi di decsai.ugr.es
Judul
Dikutip oleh
Dikutip oleh
Tahun
Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI
AB Arrieta, N Díaz-Rodríguez, J Del Ser, A Bennetot, S Tabik, A Barbado, ...
Information fusion 58, 82-115, 2020
83882020
A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms
J Derrac, S García, D Molina, F Herrera
Swarm and Evolutionary Computation 1 (1), 3-18, 2011
52832011
Keel data-mining software tool: Data set repository, integration of algorithms and experimental analysis framework
J Derrac, S Garcia, L Sanchez, F Herrera
J. Mult. Valued Logic Soft Comput 17, 255-287, 2015
29592015
Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: Experimental analysis of power
S García, A Fernández, J Luengo, F Herrera
Information sciences 180 (10), 2044-2064, 2010
22782010
SMOTE for learning from imbalanced data: progress and challenges, marking the 15-year anniversary
A Fernández, S Garcia, F Herrera, NV Chawla
Journal of artificial intelligence research 61, 863-905, 2018
19152018
An insight into classification with imbalanced data: Empirical results and current trends on using data intrinsic characteristics
V López, A Fernández, S García, V Palade, F Herrera
Information sciences 250, 113-141, 2013
18962013
A study on the use of non-parametric tests for analyzing the evolutionary algorithms’ behaviour: a case study on the CEC’2005 special session on real parameter optimization
S García, D Molina, M Lozano, F Herrera
Journal of Heuristics 15, 617-644, 2009
17842009
Data Preprocessing in Data Mining
S García, J Luengo, F Herrera
Springer, 2015
17742015
An Extension on "Statistical Comparisons of Classifiers over Multiple Data Sets" for all Pairwise Comparisons
S García, F Herrera
Journal of Machine Learning Research 9, 2677-2694, 2008
17572008
KEEL: a software tool to assess evolutionary algorithms for data mining problems
J Alcalá-Fdez, L Sanchez, S Garcia, MJ del Jesus, S Ventura, JM Garrell, ...
Soft Computing 13, 307-318, 2009
17192009
Learning from Imbalanced Data Sets
A Fernández, S García, M Galar, RC Prati, B Krawczyk, F Herrera
Springer, 2018
13972018
Prototype selection for nearest neighbor classification: Taxonomy and empirical study
S Garcia, J Derrac, J Cano, F Herrera
IEEE transactions on pattern analysis and machine intelligence 34 (3), 417-435, 2012
8202012
A study of statistical techniques and performance measures for genetics-based machine learning: accuracy and interpretability
S García, A Fernández, J Luengo, F Herrera
Soft Computing 13, 959-977, 2009
7992009
Big data preprocessing: methods and prospects
S García, S Ramírez-Gallego, J Luengo, JM Benítez, F Herrera
Big data analytics 1, 1-22, 2016
7762016
Self-labeled techniques for semi-supervised learning: taxonomy, software and empirical study
I Triguero, S García, F Herrera
Knowledge and Information Systems 42 (2), 245-284, 2015
6902015
A survey of discretization techniques: taxonomy and empirical analysis in supervised learning
S García, J Luengo, J Saez, V Lopez, F Herrera
IEEE Transactions on Knowledge and Data Engineering 25 (4), 734-750, 2013
6902013
A survey on data preprocessing for data stream mining: Current status and future directions
S Ramírez-Gallego, B Krawczyk, S García, M Woźniak, F Herrera
Neurocomputing 239, 39-57, 2017
5532017
Evolutionary undersampling for classification with imbalanced datasets: Proposals and taxonomy
S García, F Herrera
Evolutionary computation 17 (3), 275-306, 2009
5062009
Recent trends in the use of statistical tests for comparing swarm and evolutionary computing algorithms: Practical guidelines and a critical review
J Carrasco, S García, MM Rueda, S Das, F Herrera
Swarm and Evolutionary Computation 54, 100665, 2020
4472020
A practical tutorial on bagging and boosting based ensembles for machine learning: Algorithms, software tools, performance study, practical perspectives and opportunities
S González, S García, J Del Ser, L Rokach, F Herrera
Information Fusion 64, 205-237, 2020
4042020
Sistem tidak dapat melakukan operasi ini. Coba lagi nanti.
Artikel 1–20