Artikel dengan mandat akses publik - Anita RajaPelajari lebih lanjut
Tersedia di suatu tempat: 9
Predicting Preterm Birth Is Not Elusive: Machine Learning Paves the Way to Individual Wellness.
I Vovsha, A Rajan, A Salleb-Aouissi, A Raja, A Radeva, H Diab, A Tomar, ...
AAAI Spring Symposia 22, 2014
Mandat: US National Institutes of Health
Using kernel methods and model selection for prediction of preterm birth
I Vovsha, A Salleb-Aouissi, A Raja, T Koch, A Rybchuk, A Radeva, ...
Machine Learning for Healthcare Conference, 55-72, 2016
Mandat: US National Science Foundation, US National Institutes of Health
Genetic polymorphisms associated with adverse pregnancy outcomes in nulliparas
RF Guerrero, RR Khan, RJ Wapner, MW Hahn, A Raja, A Salleb-Aouissi, ...
medRxiv, 2022.02. 28.22271641, 2022
Mandat: US National Institutes of Health
Data preparation of the nuMoM2b dataset
A Goretsky, A Dmitrienko, I Tang, N Lari, O Kunhardt, RR Khan, ...
medRxiv, 2021.08. 24.21262142, 2021
Mandat: US National Institutes of Health
Preeclampsia Predictor with Machine Learning: A Comprehensive and Bias-Free Machine Learning Pipeline
CLIN Yun, D MALLIA, AO CLARK-SEVILLA, A CATTO, A LESHCHENKO, ...
medRxiv, 2022
Mandat: US National Institutes of Health
Leveraging conflict to bridge cognitive reasoning and generative algorithms
A Raja, A Leshchenko, J Kim
Proceedings of the AAAI Symposium Series 2 (1), 391-395, 2023
Mandat: US National Institutes of Health
ReLESS: A Framework for Assessing Safety in Deep Learning Systems
N Jia, A Raja, RT Khatchadourian
Mandat: US National Science Foundation
Searching and visualizing genetic associations of pregnancy traits by using GnuMoM2b
Q Yan, RF Guerrero, RR Khan, AA Surujnarine, RJ Wapner, MW Hahn, ...
Genetics 225 (2), iyad151, 2023
Mandat: US National Institutes of Health
Towards Safe Automated Refactoring of Imperative Deep Learning Programs to Graph Execution
R Khatchadourian, TC Vélez, M Bagherzadeh, N Jia, A Raja
2023 38th IEEE/ACM International Conference on Automated Software …, 2023
Mandat: US National Science Foundation
Informasi terbitan dan pendanaan ditentukan secara otomatis oleh program komputer