Artikel dengan mandat akses publik - Michael J. PazzaniPelajari lebih lanjut
Tersedia di suatu tempat: 13
Detecting glaucoma from fundus photographs using deep learning without convolutions: transformer for improved generalization
R Fan, K Alipour, C Bowd, M Christopher, N Brye, JA Proudfoot, ...
Ophthalmology science 3 (1), 100233, 2023
Mandat: US National Institutes of Health
A comprehensive explanation framework for biomedical time series classification
P Ivaturi, M Gadaleta, AC Pandey, M Pazzani, SR Steinhubl, G Quer
IEEE journal of biomedical and health informatics 25 (7), 2398-2408, 2021
Mandat: US National Science Foundation, US Department of Defense, US National …
Expert-informed, user-centric explanations for machine learning
M Pazzani, S Soltani, R Kaufman, S Qian, A Hsiao
Proceedings of the AAAI Conference on Artificial Intelligence 36 (11), 12280 …, 2022
Mandat: US National Science Foundation, US Department of Defense
The independent sign bias: Gaining insight from multiple linear regression
MJ Pazzani, SD Bay
Proceedings of the Twenty-first Annual Conference of the Cognitive Science …, 2020
Mandat: US National Science Foundation
Feature interpretation using generative adversarial networks (FIGAN): a framework for visualizing a CNN’s learned features
KA Hasenstab, J Huynh, S Masoudi, GM Cunha, M Pazzani, A Hsiao
IEEE Access 11, 5144-5160, 2023
Mandat: US National Science Foundation
A natural language query interface for searching personal information on smartwatches
R Rawassizadeh, C Dobbins, M Nourizadeh, Z Ghamchili, M Pazzani
2017 IEEE International Conference on Pervasive Computing and Communications …, 2017
Mandat: US National Science Foundation
Cdeepex: Contrastive deep explanations
A Feghahati, CR Shelton, MJ Pazzani, K Tang
ECAI 2020, 1143-1151, 2020
Mandat: US National Science Foundation, US Department of Defense
User-centric enhancements to explainable ai algorithms for image classification
S Soltani, RA Kaufman, MJ Pazzani
Proceedings of the Annual Meeting of the Cognitive Science Society 44 (44), 2022
Mandat: US National Science Foundation, US Department of Defense, US National …
Explaining Contrasting Categories.
MJ Pazzani, A Feghahati, CR Shelton, AR Seitz
IUI Workshops 7, 2018
Mandat: US Department of Defense
Deep learning radiographic assessment of pulmonary edema: optimizing clinical performance, training with serum biomarkers
J Huynh, S Masoudi, A Noorbakhsh, A Mahmoodi, S Kligerman, A Yen, ...
IEEE Access 10, 48577-48588, 2022
Mandat: US National Science Foundation, US Department of Defense
Deep learning radiographic assessment of pulmonary edema: Training With Serum Biomarkers
J Huynh, S Masoudi, A Noorbakhsh, A Mahmoodi, M Pazzani, A Hsiao
Medical Imaging with Deep Learning, 2022
Mandat: US National Science Foundation, US Department of Defense
Improving Explanations of Image Classification with Ensembles of Learners
A Ahamed, K Alipour, S Kumar, S Soltani, M Pazzani
CS & IT Conference Proceedings 12 (18), 2022
Mandat: US National Science Foundation, US Department of Defense
Workshop Report: C-Accel Track Recommendation: Ethical Design of AIs (EDAIs) Executive Summary
KA Ashley, I Canavotto, J Cristman, D Danks, K Hammond, J Horty, ...
NSF Public Access Repository, 2023
Mandat: US National Science Foundation
Informasi terbitan dan pendanaan ditentukan secara otomatis oleh program komputer