A continuum based three-dimensional shell element for laminated structures S Klinkel, F Gruttmann, W Wagner Computers & Structures 71 (1), 43-62, 1999 | 302 | 1999 |
A robust non-linear solid shell element based on a mixed variational formulation S Klinkel, F Gruttmann, W Wagner Computer methods in applied mechanics and engineering 195 (1-3), 179-201, 2006 | 225 | 2006 |
Isogeometric Reissner–Mindlin shell analysis with exactly calculated director vectors W Dornisch, S Klinkel, B Simeon Computer Methods in Applied Mechanics and Engineering 253, 491-504, 2013 | 194 | 2013 |
A geometrical non‐linear brick element based on the EAS‐method S Klinkel, W Wagner International Journal for Numerical Methods in Engineering 40 (24), 4529-4545, 1997 | 173 | 1997 |
Using finite strain 3D‐material models in beam and shell elements S Klinkel, S Govindjee Engineering Computations 19 (3), 254-271, 2002 | 131 | 2002 |
A constitutive model for magnetostrictive and piezoelectric materials K Linnemann, S Klinkel, W Wagner International Journal of Solids and Structures 46 (5), 1149-1166, 2009 | 121 | 2009 |
A phenomenological constitutive model for ferroelastic and ferroelectric hysteresis effects in ferroelectric ceramics S Klinkel International Journal of Solids and Structures 43 (22-23), 7197-7222, 2006 | 117 | 2006 |
The weak substitution method–an application of the mortar method for patch coupling in NURBS‐based isogeometric analysis W Dornisch, G Vitucci, S Klinkel International Journal for Numerical Methods in Engineering 103 (3), 205-234, 2015 | 111 | 2015 |
A geometrically non‐linear piezoelectric solid shell element based on a mixed multi‐field variational formulation S Klinkel, W Wagner International Journal for Numerical Methods in Engineering 65 (3), 349-382, 2006 | 96 | 2006 |
A mixed shell formulation accounting for thickness strains and finite strain 3d material models S Klinkel, F Gruttmann, W Wagner International journal for numerical methods in engineering 74 (6), 945-970, 2008 | 90 | 2008 |
An efficient and robust rotational formulation for isogeometric Reissner–Mindlin shell elements W Dornisch, R Müller, S Klinkel Computer Methods in Applied Mechanics and Engineering 303, 1-34, 2016 | 86 | 2016 |
A piezoelectric solid shell element based on a mixed variational formulation for geometrically linear and nonlinear applications S Klinkel, W Wagner Computers & structures 86 (1-2), 38-46, 2008 | 81 | 2008 |
Multi-patch isogeometric analysis for Kirchhoff–Love shell elements S Schuß, M Dittmann, B Wohlmuth, S Klinkel, C Hesch Computer Methods in Applied Mechanics and Engineering 349, 91-116, 2019 | 59 | 2019 |
Treatment of Reissner–Mindlin shells with kinks without the need for drilling rotation stabilization in an isogeometric framework W Dornisch, S Klinkel Computer Methods in Applied Mechanics and Engineering 276, 35-66, 2014 | 57 | 2014 |
A NURBS based hybrid collocation–Galerkin method for the analysis of boundary represented solids S Klinkel, L Chen, W Dornisch Computer Methods in Applied Mechanics and Engineering 284, 689-711, 2015 | 55 | 2015 |
An anisotropic fibre-matrix material model at finite elastic-plastic strains S Klinkel, C Sansour, W Wagner Computational Mechanics 35, 409-417, 2005 | 53 | 2005 |
Theorie und Numerik eines Volumen-Schalen-Elementes bei finiten elastischen und plastischen Verzerrungen SO Klinkel Inst. für Baustatik, 2000 | 52 | 2000 |
Dielectric elastomers–numerical modeling of nonlinear visco‐electroelasticity A Büschel, S Klinkel, W Wagner International Journal for Numerical Methods in Engineering 93 (8), 834-856, 2013 | 51 | 2013 |
A semi‐active tuned liquid column damper for lateral vibration control of high‐rise structures: theory and experimental verification O Altay, S Klinkel Structural control and health monitoring 25 (12), e2270, 2018 | 49 | 2018 |
A NURBS based Galerkin approach for the analysis of solids in boundary representation L Chen, B Simeon, S Klinkel Computer Methods in Applied Mechanics and Engineering 305, 777-805, 2016 | 48 | 2016 |