Ikuti
Pranav Roy
Pranav Roy
Johns Hopkins University
Email yang diverifikasi di jh.edu
Judul
Dikutip oleh
Dikutip oleh
Tahun
Predicting the work function of 2D MXenes using machine-learning methods
P Roy, L Rekhi, SW Koh, H Li, TS Choksi
Journal of Physics: Energy 5 (3), 034005, 2023
282023
Carbon Capture and Utilization by graphenes-path covered and ahead
I Sreedhar, U Upadhyay, P Roy, SM Thodur, CM Patel
Journal of Cleaner Production 284, 124712, 2021
272021
Establishing Structure-Function Relationships in Low-Dimensional Mxenes Using Machine Learning
T Choksi, P Roy, L Rekhi, H Li, SW Koh
2022 AIChE Annual Meeting, 2022
22022
Earth-Abundant Manganese Nitride Catalysts for Mild-Condition Ammonia Synthesis
W Qu, P Roy, C Wang, L Ma, F Bu, X Zhang, Z He, M Tsapatsis, ...
ACS Catalysis 15, 4817-4823, 2024
2024
Navigating the Unknown: Efficiently Locating the Transition State of the Diels-Alder Reaction through Adaptively Sampled Point Clouds
A Georgiou, B Munoz, P Roy, BC Bukowski, IG Kevrekidis
2024 AIChE Annual Meeting, 2024
2024
Ab-Initio Design of Mild Temperature Ammonia Synthesis Catalysts Using Ni-Supported Metal Nitrides
P Roy, BC Bukowski
2024 AIChE Annual Meeting, 2024
2024
First Principles Membrane Catalyst Co-Design for Low Temperature Ammonia Production
P Roy, G Gupta, B Bukowski
2023 AIChE Annual Meeting, 2023
2023
Predicting the Adhesion Energies and Sinter Resistance of Metal Films on Carbide and Nitride Supports
L Rekhi, KM Yam, P Roy, T Choksi
2023 AIChE Annual Meeting, 2023
2023
Prediction of Mxene 2D Material's Electronic Property Using Machine Learning Tools
J Seo, T Choksi, P Roy
2022 AIChE Annual Meeting, 2022
2022
Machine Learning Accelerated Interfacial Fluxionality in Ni-Supported Metal Nitride Ammonia Synthesis Catalysts
P Roy, BC Bukowski
Available at SSRN 5168150, 0
Sistem tidak dapat melakukan operasi ini. Coba lagi nanti.
Artikel 1–10