Study of temporal effects on subjective video quality of experience CG Bampis, Z Li, AK Moorthy, I Katsavounidis, A Aaron, AC Bovik IEEE Transactions on Image Processing 26 (11), 5217-5231, 2017 | 208 | 2017 |
VMAF: The journey continues Z Li, C Bampis, J Novak, A Aaron, K Swanson, A Moorthy, JD Cock Netflix Technology Blog 25 (1), 2018 | 180 | 2018 |
SpEED-QA: Spatial efficient entropic differencing for image and video quality CG Bampis, P Gupta, R Soundararajan, AC Bovik IEEE signal processing letters 24 (9), 1333-1337, 2017 | 157 | 2017 |
Towards perceptually optimized adaptive video streaming-a realistic quality of experience database CG Bampis, Z Li, I Katsavounidis, TY Huang, C Ekanadham, AC Bovik IEEE Transactions on Image Processing 30, 5182-5197, 2021 | 153* | 2021 |
Spatiotemporal feature integration and model fusion for full reference video quality assessment CG Bampis, Z Li, AC Bovik IEEE Transactions on Circuits and Systems for Video Technology 29 (8), 2256-2270, 2018 | 130 | 2018 |
Feature-based prediction of streaming video QoE: Distortions, stalling and memory CG Bampis, AC Bovik Signal Processing: Image Communication 68, 218-228, 2018 | 116* | 2018 |
Recurrent and dynamic models for predicting streaming video quality of experience CG Bampis, Z Li, I Katsavounidis, AC Bovik IEEE Transactions on Image Processing 27 (7), 3316-3331, 2018 | 87 | 2018 |
Recover subjective quality scores from noisy measurements Z Li, CG Bampis 2017 Data compression conference (DCC), 52-61, 2017 | 74 | 2017 |
ProxIQA: A proxy approach to perceptual optimization of learned image compression LH Chen, CG Bampis, Z Li, A Norkin, AC Bovik IEEE Transactions on Image Processing 30, 360-373, 2020 | 72 | 2020 |
Graph-driven diffusion and random walk schemes for image segmentation CG Bampis, P Maragos, AC Bovik IEEE Transactions on Image Processing 26 (1), 35-50, 2016 | 71 | 2016 |
Continuous prediction of streaming video QoE using dynamic networks CG Bampis, Z Li, AC Bovik IEEE Signal Processing Letters 24 (7), 1083-1087, 2017 | 69 | 2017 |
A simple model for subject behavior in subjective experiments Z Li, CG Bampis, L Krasula, L Janowski, I Katsavounidis arXiv preprint arXiv:2004.02067, 2020 | 57 | 2020 |
Predicting the quality of images compressed after distortion in two steps X Yu, CG Bampis, P Gupta, AC Bovik IEEE Transactions on Image Processing 28 (12), 5757-5770, 2019 | 55 | 2019 |
Predicting the quality of compressed videos with pre-existing distortions X Yu, N Birkbeck, Y Wang, CG Bampis, B Adsumilli, AC Bovik IEEE Transactions on Image Processing 30, 7511-7526, 2021 | 44 | 2021 |
A subjective and objective study of space-time subsampled video quality DY Lee, S Paul, CG Bampis, H Ko, J Kim, SY Jeong, B Homan, AC Bovik IEEE Transactions on Image Processing 31, 934-948, 2021 | 43 | 2021 |
Perceptual video quality prediction emphasizing chroma distortions LH Chen, CG Bampis, Z Li, J Sole, AC Bovik IEEE Transactions on Image Processing 30, 1408-1422, 2020 | 33 | 2020 |
Live netflix video quality of experience database CG Bampis, Z Li, AK Moorthy, I Katsavounidis, A Aaron, AC Bovik Online: http://live. ece. utexas. edu/research/LIVE_NFLXStudy/index. html, 2016 | 25 | 2016 |
Learning to distort images using generative adversarial networks LH Chen, CG Bampis, Z Li, AC Bovik IEEE Signal Processing Letters 27, 2144-2148, 2020 | 24 | 2020 |
Adversarial video compression guided by soft edge detection S Kim, JS Park, CG Bampis, J Lee, MK Markey, AG Dimakis, AC Bovik ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and …, 2020 | 21 | 2020 |
Fusion of panoramic background images using color and depth data G Somanath, CG Bampis US Patent 9,699,380, 2017 | 21 | 2017 |