Követés
Prabhu Teja Sivaprasad
Prabhu Teja Sivaprasad
AWS AI
E-mail megerősítve itt: idiap.ch - Kezdőlap
Cím
Hivatkozott rá
Hivatkozott rá
Év
Uncertainty Reduction for Model Adaptation in Semantic Segmentation
S Prabhu Teja, F Fleuret
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern …, 2021
165*2021
Optimizer benchmarking needs to account for hyperparameter tuning
PT Sivaprasad, F Mai, T Vogels, M Jaggi, F Fleuret
International conference on machine learning, 9036-9045, 2020
66*2020
Test time adaptation through perturbation robustness
PT Sivaprasad, F Fleuret
arXiv preprint arXiv:2110.10232, 2021
36*2021
Continual learning with low rank adaptation
M Wistuba, PT Sivaprasad, L Balles, G Zappella
arXiv preprint arXiv:2311.17601, 2023
132023
A ballistic stroke representation of online handwriting for recognition
SP Teja, AM Namboodiri
2013 12th International Conference on Document Analysis and Recognition, 857-861, 2013
112013
Paumer: Patch pausing transformer for semantic segmentation
E Courdier, PT Sivaprasad, F Fleuret
arXiv preprint arXiv:2311.00586, 2023
42023
Choice of peft technique in continual learning: Prompt tuning is not all you need
M Wistuba, PT Sivaprasad, L Balles, G Zappella
arXiv preprint arXiv:2406.03216, 2024
22024
On the Choice of Learning Rate for Local SGD
L Balles, PT Sivaprasad, C Archambeau
Transactions on Machine Learning Research, 2023
22023
Confidence Matters: Applications to Semantic Segmentation
PT Sivaprasad
EPFL, 2023
2023
A rendszer jelenleg nem tudja elvégezni a műveletet. Próbálkozzon újra később.
Cikkek 1–9