Követés
Alexander Dietmüller
Alexander Dietmüller
PhD Student in Communication Networks, ETH Zürich
E-mail megerősítve itt: ethz.ch - Kezdőlap
Cím
Hivatkozott rá
Hivatkozott rá
Év
{SP-PIFO}: Approximating {Push-In}{First-Out} behaviors using {Strict-Priority} queues
AG Alcoz, A Dietmüller, L Vanbever
17th USENIX Symposium on Networked Systems Design and Implementation (NSDI …, 2020
1302020
pforest: In-network inference with random forests
C Busse-Grawitz, R Meier, A Dietmüller, T Bühler, L Vanbever
arXiv preprint arXiv:1909.05680, 2019
1072019
Obstacle avoidance and target acquisition for robot navigation using a mixed signal analog/digital neuromorphic processing system
MB Milde, H Blum, A Dietmüller, D Sumislawska, J Conradt, G Indiveri, ...
Frontiers in neurorobotics 11, 28, 2017
1002017
A neuromorphic controller for a robotic vehicle equipped with a dynamic vision sensor
H Blum, A Dietmüller, M Milde, J Conradt, G Indiveri, Y Sandamirskaya
Robotics Science and Systems, RSS 2017, 2017
522017
P2GO: P4 profile-guided optimizations
P Wintermeyer, M Apostolaki, A Dietmüller, L Vanbever
Proceedings of the 19th ACM Workshop on Hot Topics in Networks, 146-152, 2020
382020
A new hope for network model generalization
A Dietmüller, S Ray, R Jacob, L Vanbever
Proceedings of the 21st ACM Workshop on Hot Topics in Networks, 152-159, 2022
212022
Obstacle avoidance and target acquisition in mobile robots equipped with neuromorphic sensory-processing systems
MB Milde, A Dietmüller, H Blum, G Indiveri, Y Sandamirskaya
2017 IEEE International Symposium on Circuits and Systems (ISCAS), 1-4, 2017
162017
Siddhant Ray, Romain Jacob, and Laurent Vanbever. 2022. A new hope for network model generalization
A Dietmüller
Proceedings of the 21st ACM Workshop on Hot Topics in Networks, 152-159, 0
6
pForest: In-Network Inference with Random Forests. CoRR abs/1909.05680 (2019)
C Busse-Grawitz, R Meier, A Dietmüller, T Bühler, L Vanbever
arXiv preprint arXiv:1909.05680, 2019
52019
On Sample Selection for Continual Learning: a Video Streaming Case Study
A Dietmüller, R Jacob, L Vanbever
ACM SIGCOMM Computer Communication Review 54 (2), 10-35, 2024
22024
FitNets: An Adaptive Framework to Learn Accurate Traffic Distributions
A Dietmüller, AG Alcoz, L Vanbever
arXiv preprint arXiv:2405.10931, 2024
12024
Poster: Learning distributions to detect anomalies using all the network traffic
A Dietmüller, G Fragkouli, L Vanbever
Proceedings of the ACM SIGCOMM 2023 Conference, 1108-1110, 2023
12023
Adaptive Network Traffic Modeling
A Dietmüller
ETH Zurich, 2024
2024
Data plane: Stop sampling and start scoring!: How to learn distributions that fit all traffic
A Dietmüller, G Fragkouli, L Vanbever
37th ACM SIGCOMM Conference (SIGCOMM 2023), 2023
2023
Obstacle Avoidance and Target Acquisition for Robot Navigation Using a Mixed Signal Analog
MB Milde, H Blum, A Dietmüller, D Sumislawska, J Conradt, G Indiveri, ...
Neural Computation in Embodied Closed-Loop Systems for the Generation of …, 2018
2018
Fault-Tolerance Mechanisms for Glossy-based Wireless Communication Networks
A Dietmüller
ETH Zurich, 2017
2017
Advancing Communication Networks through Learning and Control
A Dietmüller, L Vanbever
A rendszer jelenleg nem tudja elvégezni a műveletet. Próbálkozzon újra később.
Cikkek 1–17