Követés
Sumyeong Ahn
Sumyeong Ahn
Energy AI, KENTECH
E-mail megerősítve itt: kentech.ac.kr - Kezdőlap
Cím
Hivatkozott rá
Hivatkozott rá
Év
Cuda: Curriculum of data augmentation for long-tailed recognition
S Ahn, J Ko, SY Yun
arXiv preprint arXiv:2302.05499, 2023
512023
Mitigating dataset bias by using per-sample gradient
S Ahn, S Kim, SY Yun
arXiv preprint arXiv:2205.15704, 2022
222022
Multi-armed bandit with additional observations
D Yun, A Proutiere, S Ahn, J Shin, Y Yi
Proceedings of the ACM on Measurement and Analysis of Computing Systems 2 (1 …, 2018
212018
Neuro-DCF: Design of wireless MAC via multi-agent reinforcement learning approach
S Moon, S Ahn, K Son, J Park, Y Yi
Proceedings of the Twenty-second International Symposium on Theory …, 2021
162021
Comparison of prompt engineering and fine-tuning strategies in large language models in the classification of clinical notes
X Zhang, N Talukdar, S Vemulapalli, S Ahn, J Wang, H Meng, ...
AMIA Summits on Translational Science Proceedings 2024, 478, 2024
152024
Active prompt learning in vision language models
J Bang, S Ahn, JG Lee
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern …, 2024
72024
Fine tuning pre trained models for robustness under noisy labels
S Ahn, S Kim, J Ko, SY Yun
arXiv preprint arXiv:2310.17668, 2023
72023
Vacode: Visual augmented contrastive decoding
S Kim, B Cho, S Bae, S Ahn, SY Yun
arXiv preprint arXiv:2408.05337, 2024
52024
NASH: A simple unified framework of structured pruning for accelerating encoder-decoder language models
J Ko, S Park, Y Kim, S Ahn, DS Chang, E Ahn, SY Yun
arXiv preprint arXiv:2310.10054, 2023
52023
Large Language Models in Medical Term Classification and Unexpected Misalignment Between Response and Reasoning
X Zhang, S Vemulapalli, N Talukdar, S Ahn, J Wang, H Meng, ...
arXiv preprint arXiv:2312.14184, 2023
42023
Enlarging discriminative power by adding an extra class in unsupervised domain adaptation
HH Tran, S Ahn, T Lee, Y Yi
2020 25th International Conference on Pattern Recognition (ICPR), 1812-1819, 2021
42021
Denoising after entropy-based debiasing a robust training method for dataset bias with noisy labels
S Ahn, SY Yun
Proceedings of the AAAI Conference on Artificial Intelligence 37 (1), 169-177, 2023
32023
Efficient utilization of pre-trained model for learning with noisy labels
J Ko, S Ahn, SY Yun
ICLR 2023 Workshop on Pitfalls of limited data and computation for …, 2023
32023
FedDr+: Stabilizing Dot-regression with Global Feature Distillation for Federated Learning
S Kim, M Jeong, S Kim, S Cho, S Ahn, SY Yun
arXiv preprint arXiv:2406.02355, 2024
12024
Augmented Risk Prediction for the Onset of Alzheimer's Disease from Electronic Health Records with Large Language Models
J Wang, S Ahn, T Dalal, X Zhang, W Pan, Q Zhang, B Chen, HH Dodge, ...
arXiv preprint arXiv:2405.16413, 2024
12024
Distributed In-Context Learning under Non-IID Among Clients
S Liang, S Ahn, J Zhou
arXiv preprint arXiv:2408.00144, 2024
2024
Client Sampling Algorithm in Federated Learning via Combinatorial Averaging and Multi-Armed Bandits
S Bae, T Kim, S Ahn, S Kim, J Ko, SY Yun
한국정보과학회 학술발표논문집, 1088-1090, 2022
2022
Robust Prompt Learning For Vision-Language Models With Noisy Labels
S Ahn, S Liang, J Zhou
ConDS: Context Distribution Shift for Robust In-Context Learning
S Yu, S Ahn, S Liang, B Hou, J Ji, S Chang, J Zhou
ORBIS: Open Dataset Can Rescue You From Dataset Bias
S Ahn, SY Yun
A rendszer jelenleg nem tudja elvégezni a műveletet. Próbálkozzon újra később.
Cikkek 1–20