Követés
Robin Senge
Robin Senge
inovex GmbH
E-mail megerősítve itt: robinsenge.com - Kezdőlap
Cím
Hivatkozott rá
Hivatkozott rá
Év
Reliable classification: Learning classifiers that distinguish aleatoric and epistemic uncertainty
R Senge, S Bösner, K Dembczyński, J Haasenritter, O Hirsch, ...
Information Sciences 255, 16-29, 2014
2202014
Dependent binary relevance models for multi-label classification
E Montanes, R Senge, J Barranquero, JR Quevedo, JJ del Coz, ...
Pattern Recognition 47 (3), 1494-1508, 2014
1762014
Comparing fuzzy partitions: A generalization of the rand index and related measures
E Hullermeier, M Rifqi, S Henzgen, R Senge
IEEE Transactions on Fuzzy Systems 20 (3), 546-556, 2011
1432011
Multilabel classification for exploiting cross-resistance information in HIV-1 drug resistance prediction
D Heider, R Senge, W Cheng, E Hüllermeier
Bioinformatics 29 (16), 1946-1952, 2013
932013
Top-down induction of fuzzy pattern trees
R Senge, E Hüllermeier
IEEE Transactions on Fuzzy Systems 19 (2), 241-252, 2010
852010
On the Problem of Error Propagation in Classifier Chains for Multi-Label Classification⋆
R Senge, JJ del Coz, E Hüllermeier
Data Analysis, Machine Learning and Knowledge Discovery, 163-170, 2014
682014
Distributional Regression for Demand Forecasting in e-grocery
H Jahnke, M Ulrich, R Pesch, R Senge, R Langrock
European Journal of Operational Research, 2019
59*2019
Rectifying classifier chains for multi-label classification
R Senge, JJ del Coz, E Hüllermeier
Lernen, Wissen, Adaption 2013, 162-169, 2013
49*2013
Classification-based model selection in retail demand forecasting
M Ulrich, H Jahnke, R Langrock, R Pesch, R Senge
International Journal of Forecasting 38 (1), 209-223, 2022
452022
Evolving Fuzzy Pattern Trees for Binary Classification on Data Streams
A Shaker, R Senge, E Hüllermeier
Information Science, 34-45, 2013
452013
Exploiting HIV-1 protease and reverse transcriptase cross-resistance information for improved drug resistance prediction by means of multi-label classification
M Riemenschneider, R Senge, U Neumann, E Hüllermeier, D Heider
BioData mining 9, 1-6, 2016
382016
Fast fuzzy pattern tree learning for classification
R Senge, E Huellermeier
IEEE Transactions on Fuzzy Systems 23 (6), 2024-2033, 2015
27*2015
Pattern trees for regression and fuzzy systems modeling
R Senge, E Hüllermeier
International Conference on Fuzzy Systems, 1-7, 2010
232010
Multivariate modeling to identify patterns in clinical data: the example of chest pain
O Hirsch, S Bösner, E Hüllermeier, R Senge, K Dembczynski, ...
BMC medical research methodology 11, 1-10, 2011
142011
Comparing methods for knowledge-driven and data-driven fuzzy modeling: A case study in textile industry
M Nasiri, E Hüllermeier, R Senge, E Lughofer
Proceedings IFSA–2011, World Congress of the International Fuzzy Systems …, 2011
102011
José Barranquero, José Ramón Quevedo, Juan José del Coz, and Eyke Hüllermeier. 2014. Dependent binary relevance models for multi-label classification
E Montañés, R Senge
Pattern Recognition 47 (3), 1494-1508, 2014
92014
Fuzzy Pattern Trees as an Alternative to Rule-based Fuzzy Systems: Knowledge-driven, Data-driven and Hybrid Modeling of Color Yield in Polyester Dyeing
M Nasiri, T Fober, R Senge, E Hüllermeier
IFSA World Congress and NAFIPS Annual Meeting (IFSA/NAFIPS), 2013 Joint, 2013
72013
Machine learning methods for fuzzy pattern tree induction
R Senge
Philipps-Universität Marburg, 2014
62014
Demand forecasting using long short-term memory neural networks
M Gołąbek, R Senge, R Neumann
arXiv preprint arXiv:2008.08522, 2020
52020
Diagnosis in context-broadening the perspective
J Haasenritter, A Viniol, A Becker, S Bösner, E Hüllermeier, R Senge, ...
Zeitschrift fur Evidenz, Fortbildung und Qualitat im Gesundheitswesen 107 (9 …, 2012
5*2012
A rendszer jelenleg nem tudja elvégezni a műveletet. Próbálkozzon újra később.
Cikkek 1–20