Követés
Takayuki Nishio
Takayuki Nishio
School of Engineering, Tokyo Tech
E-mail megerősítve itt: ict.e.titech.ac.jp - Kezdőlap
Cím
Hivatkozott rá
Hivatkozott rá
Év
Client selection for federated learning with heterogeneous resources in mobile edge
T Nishio, R Yonetani
ICC 2019-2019 IEEE international conference on communications (ICC), 1-7, 2019
16842019
Distillation-Based Semi-Supervised Federated Learning for Communication-Efficient Collaborative Training with Non-IID Private Data
S Itahara, T Nishio, Y Koda, M Morikura, K Yamamoto
IEEE Transactions on Mobile Computing, 2021
2732021
Hybrid-FL for wireless networks: Cooperative learning mechanism using non-IID data
N Yoshida, T Nishio, M Morikura, K Yamamoto, R Yonetani
ICC 2020-2020 IEEE International Conference On Communications (ICC), 1-7, 2020
262*2020
Service-oriented heterogeneous resource sharing for optimizing service latency in mobile cloud
T Nishio, R Shinkuma, T Takahashi, NB Mandayam
Proceedings of the first international workshop on Mobile cloud computing …, 2013
2202013
Extreme ultra-reliable and low-latency communication
J Park, S Samarakoon, H Shiri, MK Abdel-Aziz, T Nishio, A Elgabli, ...
Nature Electronics 5 (3), 133-141, 2022
208*2022
Proactive received power prediction using machine learning and depth images for mmWave networks
T Nishio, H Okamoto, K Nakashima, Y Koda, K Yamamoto, M Morikura, ...
IEEE Journal on Selected Areas in Communications 37 (11), 2413-2427, 2019
1142019
Deep reinforcement learning-based channel allocation for wireless lans with graph convolutional networks
K Nakashima, S Kamiya, K Ohtsu, K Yamamoto, T Nishio, M Morikura
IEEE Access 8, 31823-31834, 2020
812020
Handover management for mmWave networks with proactive performance prediction using camera images and deep reinforcement learning
Y Koda, K Nakashima, K Yamamoto, T Nishio, M Morikura
IEEE Transactions on Cognitive Communications and Networking 6 (2), 802-816, 2019
802019
Communication-efficient multimodal split learning for mmWave received power prediction
Y Koda, J Park, M Bennis, K Yamamoto, T Nishio, M Morikura, ...
IEEE Communications Letters 24 (6), 1284-1288, 2020
642020
Adaptive resource discovery in mobile cloud computing
W Liu, T Nishio, R Shinkuma, T Takahashi
Computer Communications 50, 119-129, 2014
642014
MAB-based Client Selection for Federated Learning with Uncertain Resources in Mobile Networks
N Yoshida, T Nishio, M Morikura, K Yamamoto
IEEE GLOBECOM Wksp on OpenMLC, 2020
602020
Reinforcement learning based predictive handover for pedestrian-aware mmWave networks
Y Koda, K Yamamoto, T Nishio, M Morikura
IEEE INFOCOM 2018-IEEE Conference on Computer Communications Workshops …, 2018
572018
Differentially private aircomp federated learning with power adaptation harnessing receiver noise
Y Koda, K Yamamoto, T Nishio, M Morikura
GLOBECOM 2020-2020 IEEE Global Communications Conference, 1-6, 2020
542020
When wireless communications meet computer vision in beyond 5G
T Nishio, Y Koda, J Park, M Bennis, K Doppler
IEEE Communications Standards Magazine 5 (2), 76-83, 2021
532021
Proactive handover based on human blockage prediction using RGB-D cameras for mmWave communications
Y Oguma, T Nishio, K Yamamoto, M Morikura
IEICE Transactions on Communications 99 (8), 1734-1744, 2016
372016
Machine-learning-based throughput estimation using images for mmWave communications
H Okamoto, T Nishio, M Morikura, K Yamamoto, D Murayama, K Nakahira
2017 IEEE 85th Vehicular Technology Conference (VTC Spring), 1-6, 2017
352017
Estimation of individual device contributions for incentivizing federated learning
T Nishio, R Shinkuma, NB Mandayam
2020 IEEE Globecom Workshops (GC Wkshps, 1-6, 2020
332020
Proactive base station selection based on human blockage prediction using RGB-D cameras for mmWave communications
Y Oguma, R Arai, T Nishio, K Yamamoto, M Morikura
2015 IEEE Global Communications Conference (GLOBECOM), 1-6, 2015
332015
Decentralized and model-free federated learning: Consensus-based distillation in function space
A Taya, T Nishio, M Morikura, K Yamamoto
IEEE Transactions on Signal and Information Processing over Networks 8, 799-814, 2022
212022
Packet-loss-tolerant split inference for delay-sensitive deep learning in lossy wireless networks
S Itahara, T Nishio, K Yamamoto
2021 IEEE Global Communications Conference (GLOBECOM), 1-6, 2021
212021
A rendszer jelenleg nem tudja elvégezni a műveletet. Próbálkozzon újra később.
Cikkek 1–20