Követés
Erfan Eshratifar
Erfan Eshratifar
További nevekAmir Erfan Eshratifar
Yahoo
E-mail megerősítve itt: yahooinc.com - Kezdőlap
Cím
Hivatkozott rá
Hivatkozott rá
Év
JointDNN: An Efficient Training and Inference Engine for Intelligent Mobile Cloud Computing Services
AE Eshratifar, MS Abrishami, M Pedram
IEEE Transactions on Mobile Computing, 2019
3632019
BottleNet: A Deep Learning Architecture for Intelligent Mobile Cloud Computing Services
AE Eshratifar, A Esmaili, M Pedram
2019 IEEE/ACM International Symposium on Low Power Electronics and Design …, 2019
2192019
Reliability-aware design to suppress aging
H Amrouch, B Khaleghi, A Gerstlauer, J Henkel
Proceedings of the 53rd Annual Design Automation Conference, 1-6, 2016
1242016
Energy and performance efficient computation offloading for deep neural networks in a mobile cloud computing environment
AE Eshratifar, M Pedram
Proceedings of the 2018 Great Lakes Symposium on VLSI, 111-116, 2018
1212018
Towards Collaborative Intelligence Friendly Architectures for Deep Learning
AE Eshratifar, A Esmaili, M Pedram
International Symposium on Quality Electronics Design, 2019, 2019
372019
Video Person Re-ID: Fantastic Techniques and Where to Find Them
P Pathak, AE Eshratifar, M Gormish
Proceedings of the AAAI Conference on Artificial Intelligence 34 (10), 13893 …, 2020
322020
Coarse2Fine: a two-stage training method for fine-grained visual classification
AE Eshratifar, D Eigen, M Gormish, M Pedram
Machine Vision and Applications 32 (2), 1-9, 2021
182021
Gradient Agreement as an Optimization Objective for Meta-Learning
AE Eshratifar, D Eigen, M Pedram
NeurIPS Meta-learning Workshop, 2018
162018
Runtime deep model multiplexing for reduced latency and energy consumption inference
AE Eshratifar, M Pedram
2020 IEEE 38th International Conference on Computer Design (ICCD), 263-270, 2020
13*2020
A hardware-friendly algorithm for scalable training and deployment of dimensionality reduction models on FPGA
M Nazemi, AE Eshratifar, M Pedram
International Symposium on Quality Electronics Design, 2018, 2018
132018
A meta-learning approach for custom model training
AE Eshratifar, MS Abrishami, D Eigen, M Pedram
Proceedings of the AAAI Conference on Artificial Intelligence 33 (01), 9937-9938, 2019
82019
Efficient Training of Deep Convolutional Neural Networks by Augmentation in Embedding Space
MS Abrishami, AE Eshratifar, D Eigen, Y Wang, S Nazarian, M Pedram
International Symposium on Quality Electronics Design, 2020, 2020
62020
Salient Object-Aware Background Generation using Text-Guided Diffusion Models
AE Eshratifar, JVB Soares, K Thadani, S Mishra, M Kuznetsov, YN Ku, ...
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern …, 2024
22024
SCOT: Self-Supervised Contrastive Pretraining For Zero-Shot Compositional Retrieval
B Jawade, JVB Soares, K Thadani, DD Mohan, AE Eshratifar, ...
arXiv preprint arXiv:2501.08347, 2025
2025
A rendszer jelenleg nem tudja elvégezni a műveletet. Próbálkozzon újra később.
Cikkek 1–14