Követés
Heather Mattie
Heather Mattie
Harvard T.H. Chan School of Public Health
E-mail megerősítve itt: g.harvard.edu - Kezdőlap
Cím
Hivatkozott rá
Hivatkozott rá
Év
The “inconvenient truth” about AI in healthcare
T Panch, H Mattie, LA Celi
Npj Digital Medicine 2 (1), 1-3, 2019
4362019
Artificial intelligence and algorithmic bias: implications for health systems
T Panch, H Mattie, R Atun
Journal of Global Health 9 (2), 2019
4282019
Performance of intensive care unit severity scoring systems across different ethnicities in the USA: a retrospective observational study
R Sarkar, C Martin, H Mattie, JW Gichoya, DJ Stone, LA Celi
The Lancet Digital Health 3 (4), e241-e249, 2021
632021
Best practices in the real-world data life cycle
J Zhang, J Symons, P Agapow, JT Teo, CA Paxton, J Abdi, H Mattie, ...
PLOS Digital Health 1 (1), e0000003, 2022
552022
Understanding tie strength in social networks using a local “bow tie” framework
H Mattie, K Engø-Monsen, R Ling, JP Onnela
Scientific reports 8 (1), 9349, 2018
552018
Dating app use and unhealthy weight control behaviors among a sample of US adults: a cross-sectional study
A Tran, C Suharlim, H Mattie, K Davison, M Agénor, SB Austin
Journal of Eating Disorders 7 (1), 16, 2019
512019
An interactive dashboard to track themes, development maturity, and global equity in clinical artificial intelligence research
J Zhang, S Whebell, J Gallifant, S Budhdeo, H Mattie, ...
The Lancet Digital Health 4 (4), e212-e213, 2022
492022
A distributed approach to the regulation of clinical AI
T Panch, E Duralde, H Mattie, G Kotecha, LA Celi, M Wright, F Greaves
PLOS Digital Health 1 (5), e0000040, 2022
222022
Turning the crank for machine learning: ease, at what expense?
TJ Pollard, I Chen, J Wiens, S Horng, D Wong, M Ghassemi, H Mattie, ...
The Lancet Digital Health 1 (5), e198-e199, 2019
202019
“Yes, but will it work for my patients?” Driving clinically relevant research with benchmark datasets
T Panch, TJ Pollard, H Mattie, E Lindemer, PA Keane, LA Celi
NPJ digital medicine 3 (1), 87, 2020
192020
The “inconvenient truth” about AI in healthcare. Npj Digital Medicine 2 (1), 77
T Panch, H Mattie, LA Celi
Aug, 2019
192019
Machine Learning for Acute Kidney Injury Prediction in the Intensive Care Unit
ER Gottlieb, M Samuel, JV Bonventre, LA Celi, H Mattie
Advances in Chronic Kidney Disease 29 (5), 431-438, 2022
182022
Data science in public health: building next generation capacity
N Mirin, H Mattie, L Jackson, Z Samad, R Chunara
arXiv preprint arXiv:2208.03461, 2022
72022
A framework for predicting impactability of digital care management using machine learning methods
H Mattie, P Reidy, P Bachtiger, E Lindemer, N Nikolaev, M Jouni, ...
Population health management 23 (4), 319-325, 2020
72020
The “inconvenient truth” about AI in healthcare. npj Digit. Med. 2, 77 (2019)
T Panch, H Mattie, LA Celi
7
Addressing the “elephant in the room” of AI clinical decision support through organisation-level regulation
J Zhang, H Mattie, H Shuaib, T Hensman, JT Teo, LA Celi
PLOS Digital Health 1 (9), e0000111, 2022
62022
Traditional Machine Learning Methods versus Deep Learning for Meningioma Classification, Grading, Outcome Prediction, and Segmentation: A Systematic Review and Meta-Analysis
KM Maniar, P Lassarén, A Rana, Y Yao, IA Tewarie, JVE Gerstl, ...
World neurosurgery 179, e119-e134, 2023
52023
Traditional Machine Learning Methods versus Deep Learning for Meningioma Classification, Grading, Outcome Prediction, and Segmentation: A Systematic Review and Meta-Analysis
KM Maniar, P Lassarén, A Rana, Y Yao, IA Tewarie, JVE Gerstl, ...
World Neurosurgery, 2023
52023
Edge overlap in weighted and directed social networks
H Mattie, JP Onnela
Network Science 9 (2), 179-193, 2021
52021
Generalizations of Edge Overlap to Weighted and Directed Networks
H Mattie, JP Onnela
arXiv preprint arXiv:1712.07110, 2017
52017
A rendszer jelenleg nem tudja elvégezni a műveletet. Próbálkozzon újra később.
Cikkek 1–20