Követés
Frank Wood
Cím
Hivatkozott rá
Hivatkozott rá
Év
Learning disentangled representations with semi-supervised deep generative models
B Paige, JW Van De Meent, A Desmaison, N Goodman, P Kohli, F Wood, ...
Advances in neural information processing systems 30, 2017
4142017
A new approach to probabilistic programming inference
F Wood, JW Meent, V Mansinghka
Artificial intelligence and statistics, 1024-1032, 2014
4052014
Deep variational reinforcement learning for POMDPs
M Igl, L Zintgraf, TA Le, F Wood, S Whiteson
International conference on machine learning, 2117-2126, 2018
3282018
Improved few-shot visual classification
P Bateni, R Goyal, V Masrani, F Wood, L Sigal
Proceedings of the IEEE/CVF conference on computer vision and pattern …, 2020
2922020
Diagnosis code assignment: models and evaluation metrics
A Perotte, R Pivovarov, K Natarajan, N Weiskopf, F Wood, N Elhadad
Journal of the American Medical Informatics Association 21 (2), 231-237, 2014
2882014
Online learning rate adaptation with hypergradient descent
AG Baydin, R Cornish, DM Rubio, M Schmidt, F Wood
arXiv preprint arXiv:1703.04782, 2017
2752017
On the variability of manual spike sorting
F Wood, MJ Black, C Vargas-Irwin, M Fellows, JP Donoghue
IEEE Transactions on Biomedical Engineering 51 (6), 912-918, 2004
2462004
Flexible diffusion modeling of long videos
W Harvey, S Naderiparizi, V Masrani, C Weilbach, F Wood
Advances in Neural Information Processing Systems 35, 27953-27965, 2022
2412022
Tighter variational bounds are not necessarily better
T Rainforth, A Kosiorek, TA Le, C Maddison, M Igl, F Wood, YW Teh
International Conference on Machine Learning, 4277-4285, 2018
2282018
An introduction to probabilistic programming
JW van de Meent, B Paige, H Yang, F Wood
arXiv preprint arXiv:1809.10756, 2018
2122018
Auto-encoding sequential monte carlo
TA Le, M Igl, T Rainforth, T Jin, F Wood
arXiv preprint arXiv:1705.10306, 2017
1892017
Hierarchically supervised latent Dirichlet allocation
A Perotte, F Wood, N Elhadad, N Bartlett
Advances in neural information processing systems 24, 2011
1832011
Semantics for probabilistic programming: higher-order functions, continuous distributions, and soft constraints
S Staton, H Yang, F Wood, C Heunen, O Kammar
Proceedings of the 31st Annual ACM/IEEE Symposium on Logic in Computer …, 2016
1782016
Inference compilation and universal probabilistic programming
TA Le, AG Baydin, F Wood
Artificial Intelligence and Statistics, 1338-1348, 2017
1702017
A nonparametric Bayesian alternative to spike sorting
F Wood, MJ Black
Journal of neuroscience methods 173 (1), 1-12, 2008
1612008
On nesting monte carlo estimators
T Rainforth, R Cornish, H Yang, A Warrington, F Wood
International Conference on Machine Learning, 4267-4276, 2018
1582018
Design and implementation of probabilistic programming language anglican
D Tolpin, JW van de Meent, H Yang, F Wood
Proceedings of the 28th Symposium on the Implementation and Application of …, 2016
1512016
Using synthetic data to train neural networks is model-based reasoning
TA Le, AG Baydin, R Zinkov, F Wood
2017 international joint conference on neural networks (IJCNN), 3514-3521, 2017
1392017
A stochastic memoizer for sequence data
F Wood, C Archambeau, J Gasthaus, L James, YW Teh
Proceedings of the 26th annual international conference on machine learning …, 2009
1372009
Inference networks for sequential Monte Carlo in graphical models
B Paige, F Wood
International Conference on Machine Learning, 3040-3049, 2016
1172016
A rendszer jelenleg nem tudja elvégezni a műveletet. Próbálkozzon újra később.
Cikkek 1–20