Cikkek nyilvánosan hozzáférhető megbízással - Wu Yuankai (伍元凯)További információ
Sehol sem hozzáférhető: 24
A hybrid deep learning based traffic flow prediction method and its understanding
Y Wu, H Tan, L Qin, B Ran, Z Jiang
Transportation Research Part C: Emerging Technologies 90, 166-180, 2018
Megbízások: National Natural Science Foundation of China
Deep reinforcement learning of energy management with continuous control strategy and traffic information for a series-parallel plug-in hybrid electric bus
Y Wu, H Tan, J Peng, H Zhang, H He
Applied energy 247, 454-466, 2019
Megbízások: National Natural Science Foundation of China
Rule-interposing deep reinforcement learning based energy management strategy for power-split hybrid electric vehicle
R Lian, J Peng, Y Wu, H Tan, H Zhang
Energy 197, 117297, 2020
Megbízások: National Natural Science Foundation of China
Tensor based missing traffic data completion with spatial–temporal correlation
B Ran, H Tan, Y Wu, PJ Jin
Physica A: Statistical Mechanics and its Applications 446, 54-63, 2016
Megbízások: National Natural Science Foundation of China
Energy management of hybrid electric bus based on deep reinforcement learning in continuous state and action space
H Tan, H Zhang, J Peng, Z Jiang, Y Wu
Energy Conversion and Management 195, 548-560, 2019
Megbízások: National Natural Science Foundation of China
Cross-type transfer for deep reinforcement learning based hybrid electric vehicle energy management
R Lian, H Tan, J Peng, Q Li, Y Wu
IEEE Transactions on Vehicular Technology 69 (8), 8367-8380, 2020
Megbízások: National Natural Science Foundation of China
Hybrid electric vehicle energy management with computer vision and deep reinforcement learning
Y Wang, H Tan, Y Wu, J Peng
IEEE Transactions on Industrial Informatics 17 (6), 3857-3868, 2020
Megbízások: National Natural Science Foundation of China
Cooperative energy management and eco-driving of plug-in hybrid electric vehicle via multi-agent reinforcement learning
Y Wang, Y Wu, Y Tang, Q Li, H He
Applied Energy 332, 120563, 2023
Megbízások: National Natural Science Foundation of China
Detection of train driver fatigue and distraction based on forehead EEG: a time-series ensemble learning method
C Fan, Y Peng, S Peng, H Zhang, Y Wu, S Kwong
IEEE transactions on intelligent transportation systems 23 (8), 13559-13569, 2021
Megbízások: National Natural Science Foundation of China
A fused CP factorization method for incomplete tensors
Y Wu, H Tan, Y Li, J Zhang, X Chen
IEEE transactions on neural networks and learning systems 30 (3), 751-764, 2018
Megbízások: National Natural Science Foundation of China
A comparison of traffic flow prediction methods based on DBN
H Tan, X Xuan, Y Wu, Z Zhong, B Ran
CICTP 2016, 273-283, 2016
Megbízások: National Natural Science Foundation of China
Robust tensor decomposition based on Cauchy distribution and its applications
Y Wu, H Tan, Y Li, F Li, H He
Neurocomputing 223, 107-117, 2017
Megbízások: National Natural Science Foundation of China
Flightbert: Binary encoding representation for flight trajectory prediction
D Guo, EQ Wu, Y Wu, J Zhang, R Law, Y Lin
IEEE Transactions on Intelligent Transportation Systems 24 (2), 1828-1842, 2022
Megbízások: National Natural Science Foundation of China
A deep learning framework of autonomous pilot agent for air traffic controller training
Y Lin, YK Wu, D Guo, P Zhang, C Yin, B Yang, J Zhang
IEEE transactions on human-machine systems 51 (5), 442-450, 2021
Megbízások: National Natural Science Foundation of China
Memory, attention and prediction: a deep learning architecture for car-following
Y Wu, H Tan, X Chen, B Ran
Transportmetrica B: Transport Dynamics 7 (1), 1553-1571, 2019
Megbízások: National Natural Science Foundation of China
Understanding and modeling urban mobility dynamics via disentangled representation learning
H Zhang, Y Wu, H Tan, H Dong, F Ding, B Ran
IEEE Transactions on Intelligent Transportation Systems 23 (3), 2010-2020, 2020
Megbízások: National Natural Science Foundation of China
Automatic repetition instruction generation for air traffic control training using multi-task learning with an improved copy network
J Zhang, P Zhang, D Guo, Y Zhou, Y Wu, B Yang, Y Lin
Knowledge-Based Systems 241, 108232, 2022
Megbízások: National Natural Science Foundation of China
An effective spatiotemporal deep learning framework model for short-term passenger flow prediction
X Wang, X Xu, Y Wu, J Liu
Soft Computing 26 (12), 5523-5538, 2022
Megbízások: National Natural Science Foundation of China
A multi-view attention-based spatial–temporal network for airport arrival flow prediction
Z Yan, H Yang, Y Wu, Y Lin
Transportation Research Part E: Logistics and Transportation Review 170, 102997, 2023
Megbízások: National Natural Science Foundation of China
Fuel consumption prediction for pre-departure flights using attention-based multi-modal fusion
Y Lin, D Guo, Y Wu, L Li, EQ Wu, W Ge
Information Fusion 101, 101983, 2024
Megbízások: National Natural Science Foundation of China, Research Grants Council, Hong Kong
A publikációs és a finanszírozási adatokat számítógépes program határozza meg, automatikusan.