Követés
Tom Goldstein
Tom Goldstein
Volpi-Cupal Professor of Computer Science, University of Maryland
E-mail megerősítve itt: cs.umd.edu - Kezdőlap
Cím
Hivatkozott rá
Hivatkozott rá
Év
The split Bregman method for L1-regularized problems
T Goldstein, S Osher
SIAM journal on imaging sciences 2 (2), 323-343, 2009
53362009
Visualizing the loss landscape of neural nets
H Li, Z Xu, G Taylor, C Studer, T Goldstein
Advances in neural information processing systems 31, 2018
23842018
Adversarial training for free!
A Shafahi, M Najibi, MA Ghiasi, Z Xu, J Dickerson, C Studer, LS Davis, ...
Advances in neural information processing systems 32, 2019
16452019
Poison frogs! targeted clean-label poisoning attacks on neural networks
A Shafahi, WR Huang, M Najibi, O Suciu, C Studer, T Dumitras, ...
Advances in neural information processing systems 31, 2018
13362018
Fast alternating direction optimization methods
T Goldstein, B O'Donoghue, S Setzer, R Baraniuk
SIAM Journal on Imaging Sciences 7 (3), 1588-1623, 2014
9622014
A watermark for large language models
J Kirchenbauer, J Geiping, Y Wen, J Katz, I Miers, T Goldstein
International Conference on Machine Learning, 17061-17084, 2023
7082023
Geometric applications of the split Bregman method: segmentation and surface reconstruction
T Goldstein, X Bresson, S Osher
Journal of scientific computing 45, 272-293, 2010
6002010
Freelb: Enhanced adversarial training for natural language understanding
C Zhu, Y Cheng, Z Gan, S Sun, T Goldstein, J Liu
arXiv preprint arXiv:1909.11764, 2019
5482019
Certified data removal from machine learning models
C Guo, T Goldstein, A Hannun, L Van Der Maaten
arXiv preprint arXiv:1911.03030, 2019
4972019
Dataset security for machine learning: Data poisoning, backdoor attacks, and defenses
M Goldblum, D Tsipras, C Xie, X Chen, A Schwarzschild, D Song, ...
IEEE Transactions on Pattern Analysis and Machine Intelligence 45 (2), 1563-1580, 2022
392*2022
Are adversarial examples inevitable?
A Shafahi, WR Huang, C Studer, S Feizi, T Goldstein
International Conference on Learning Representations, 2019
3862019
A cookbook of self-supervised learning
R Balestriero, M Ibrahim, V Sobal, A Morcos, S Shekhar, T Goldstein, ...
arXiv preprint arXiv:2304.12210, 2023
3782023
Transferable clean-label poisoning attacks on deep neural nets
C Zhu, WR Huang, H Li, G Taylor, C Studer, T Goldstein
International conference on machine learning, 7614-7623, 2019
3692019
Quantized precoding for massive MU-MIMO
S Jacobsson, G Durisi, M Coldrey, T Goldstein, C Studer
IEEE Transactions on Communications 65 (11), 4670-4684, 2017
3662017
Saint: Improved neural networks for tabular data via row attention and contrastive pre-training
G Somepalli, M Goldblum, A Schwarzschild, CB Bruss, T Goldstein
arXiv preprint arXiv:2106.01342, 2021
3532021
Baseline defenses for adversarial attacks against aligned language models
N Jain, A Schwarzschild, Y Wen, G Somepalli, J Kirchenbauer, P Chiang, ...
arXiv preprint arXiv:2309.00614, 2023
352*2023
Training neural networks without gradients: A scalable admm approach
G Taylor, R Burmeister, Z Xu, B Singh, A Patel, T Goldstein
International conference on machine learning, 2722-2731, 2016
3352016
Making an invisibility cloak: Real world adversarial attacks on object detectors
Z Wu, SN Lim, LS Davis, T Goldstein
Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23 …, 2020
3292020
Convex phase retrieval without lifting via PhaseMax
T Goldstein, C Studer
International Conference on Machine Learning, 1273-1281, 2017
324*2017
Test-time prompt tuning for zero-shot generalization in vision-language models
M Shu, W Nie, DA Huang, Z Yu, T Goldstein, A Anandkumar, C Xiao
Advances in Neural Information Processing Systems 35, 14274-14289, 2022
3212022
A rendszer jelenleg nem tudja elvégezni a műveletet. Próbálkozzon újra később.
Cikkek 1–20