Gemini: a family of highly capable multimodal models G Team, R Anil, S Borgeaud, Y Wu, JB Alayrac, J Yu, R Soricut, ...
arXiv preprint arXiv:2312.11805, 2023
3386 2023 Gemini 1.5: Unlocking multimodal understanding across millions of tokens of context M Reid, N Savinov, D Teplyashin, D Lepikhin, T Lillicrap, J Alayrac, ...
arXiv preprint arXiv:2403.05530, 2024
1245 2024 Scaling language models: Methods, analysis & insights from training gopher JW Rae, S Borgeaud, T Cai, K Millican, J Hoffmann, F Song, J Aslanides, ...
arXiv preprint arXiv:2112.11446, 2021
1170 2021 Improving language models by retrieving from trillions of tokens S Borgeaud, A Mensch, J Hoffmann, T Cai, E Rutherford, K Millican, ...
International conference on machine learning, 2206-2240, 2022
1147 2022 Optimisation and performance studies of the ATLAS b-tagging algorithms for the 2017-18 LHC run Atlas Collaboration
ATL-PHYS-PUB-2017-013, 2017
643 2017 Measurements of Higgs boson properties in the diphoton decay channel with of collision data at with the ATLAS detector M Aaboud, G Aad, B Abbott, B Abeloos, SH Abidi, OS AbouZeid, ...
Physical Review D 98 (5), 052005, 2018
642 2018 CaloGAN : Simulating 3D high energy particle showers in multilayer electromagnetic calorimeters with generative adversarial networksM Paganini, L de Oliveira, B Nachman
Physical Review D 97 (1), 014021, 2018
430 2018 Learning particle physics by example: location-aware generative adversarial networks for physics synthesis L de Oliveira, M Paganini, B Nachman
Computing and Software for Big Science 1 (1), 4, 2017
344 2017 Machine learning in high energy physics community white paper K Albertsson, P Altoe, D Anderson, J Anderson, M Andrews, ...
arXiv preprint arXiv:1807.02876, 2018
336 2018 Accelerating science with generative adversarial networks: an application to 3D particle showers in multilayer calorimeters M Paganini, L de Oliveira, B Nachman
Physical review letters 120 (4), 042003, 2018
307 2018 One ticket to win them all: generalizing lottery ticket initializations across datasets and optimizers A Morcos, H Yu, M Paganini, Y Tian
Advances in Neural Information Processing Systems, 4932-4942, 2019
278 2019 Search for Higgs boson pair production in the yybb final state with 13 TeV pp collision data collected by the ATLAS experiment A collaboration
Journal of High Energy Physics 2018 (11), 40, 2018
244 * 2018 Identification of jets containing b-hadrons with recurrent neural networks at the ATLAS experiment ATLAS collaboration
ATLAS note: ATL-PHYS-PUB-2017-003, http://cds. cern. ch/record/2255226, 2017
233 2017 A Roadmap for HEP Software and Computing R&D for the 2020s J Albrecht, AA Alves, G Amadio, G Andronico, N Anh-Ky, L Aphecetche, ...
Computing and software for big science 3 (1), 1-49, 2019
193 2019 Controlling physical attributes in gan-accelerated simulation of electromagnetic calorimeters L de Oliveira, M Paganini, B Nachman
Journal of Physics: Conference Series 1085 (4), 042017, 2018
72 2018 Unified Scaling Laws for Routed Language Models A Clark, D Casas, A Guy, A Mensch, M Paganini, J Hoffmann, B Damoc, ...
arXiv preprint arXiv:2202.01169, 2022
71 2022 Deep Neural Networks for Physics Analysis on low-level whole-detector data at the LHC W Bhimji, SA Farrell, T Kurth, M Paganini, E Racah
arXiv preprint arXiv:1711.03573, 2017
62 2017 The scientific method in the science of machine learning JZ Forde, M Paganini
arXiv preprint arXiv:1904.10922, 2019
42 2019 Search for Higgs boson pair production in the bbγγ final state using pp collision data at√ s= 13 TeV with the ATLAS detector ATLAS collaboration
ATLAS-CONF-2016-004, 2016
42 2016 Electromagnetic showers beyond shower shapes L De Oliveira, B Nachman, M Paganini
Nuclear Instruments and Methods in Physics Research Section A: Accelerators …, 2020
37 2020