Követés
Kayhan Behdin
Kayhan Behdin
LinkedIn
E-mail megerősítve itt: mit.edu - Kezdőlap
Cím
Hivatkozott rá
Hivatkozott rá
Év
Improved deep neural network generalization using m-sharpness-aware minimization
K Behdin, Q Song, A Gupta, D Durfee, A Acharya, S Keerthi, R Mazumder
arXiv preprint arXiv:2212.04343, 2022
17*2022
Quantease: Optimization-based quantization for language models
K Behdin, A Acharya, A Gupta, Q Song, S Zhu, S Keerthi, R Mazumder
arXiv preprint arXiv:2309.01885, 2023
15*2023
Transductive multi-label learning from missing data using smoothed rank function
A Esmaeili, K Behdin, MA Fakharian, F Marvasti
Pattern Analysis and Applications 23 (3), 1225-1233, 2020
15*2020
OBTAIN: Real-Time Beat Tracking in Audio Signals
A Mottaghi, K Behdin, A Esmaeili, M Heydari, F Marvasti
ICOSP 2017, The workshop of ICCSIT 2017, Florence, Italy, 2017
152017
Missing low-rank and sparse decomposition based on smoothed nuclear norm
M Azghani, A Esmaeili, K Behdin, F Marvasti
IEEE Transactions on Circuits and Systems for Video Technology 30 (6), 1550-1558, 2019
132019
On Statistical Properties of Sharpness-Aware Minimization: Provable Guarantees
K Behdin, R Mazumder
arXiv preprint arXiv:2302.11836, 2023
12*2023
Sparse PCA: A new scalable estimator based on integer programming
K Behdin, R Mazumder
arXiv preprint arXiv:2109.11142, 2021
92021
Osscar: One-shot structured pruning in vision and language models with combinatorial optimization
X Meng, S Ibrahim, K Behdin, H Hazimeh, N Ponomareva, R Mazumder
arXiv preprint arXiv:2403.12983, 2024
82024
Alps: Improved optimization for highly sparse one-shot pruning for large language models
X Meng, K Behdin, H Wang, R Mazumder
arXiv preprint arXiv:2406.07831, 2024
72024
GRAND-SLAMIN’Interpretable Additive Modeling with Structural Constraints
S Ibrahim, G Afriat, K Behdin, R Mazumder
Advances in Neural Information Processing Systems 36, 61158-61186, 2023
42023
Sparse gaussian graphical models with discrete optimization: Computational and statistical perspectives
K Behdin, W Chen, R Mazumder
arXiv preprint arXiv:2307.09366, 2023
42023
Sparse NMF with Archetypal Regularization: Computational and Robustness Properties
K Behdin, R Mazumder
Journal of Machine Learning Research 25 (36), 1-62, 2024
3*2024
Recovering quantized data with missing information using bilinear factorization and augmented Lagrangian method
A Esmaeili, K Behdin, F Marvasti
arXiv preprint arXiv:1810.03222, 2018
32018
End-to-end feature selection approach for learning skinny trees
S Ibrahim, K Behdin, R Mazumder
International Conference on Artificial Intelligence and Statistics, 2863-2871, 2024
12024
Efficient AI in Practice: Training and Deployment of Efficient LLMs for Industry Applications
K Behdin, Y Dai, A Fatahibaarzi, A Gupta, Q Song, S Tang, H Sang, ...
arXiv preprint arXiv:2502.14305, 2025
2025
HASSLE-free: A unified Framework for Sparse plus Low-Rank Matrix Decomposition for LLMs
M Makni, K Behdin, Z Xu, N Ponomareva, R Mazumder
arXiv preprint arXiv:2502.00899, 2025
2025
Differentially Private Best Subset Selection Via Integer Programming
K Behdin, P Prastakos, R Mazumder
Privacy Regulation and Protection in Machine Learning, 2024
2024
Statistical Learning with Discrete Structures: Statistical and Computational Perspectives
K Behdin
Massachusetts Institute of Technology, 2024
2024
Multi-Task Learning for Sparsity Pattern Heterogeneity: Statistical and Computational Perspectives
K Behdin, G Loewinger, KT Kishida, G Parmigiani, R Mazumder
arXiv preprint arXiv:2212.08697, 2022
2022
Multi-Task Learning for Sparsity Pattern Heterogeneity: A Discrete Optimization Approach
G Loewinger, K Behdin, KT Kishida, G Parmigiani, R Mazumder
arXiv preprint arXiv:2212.08697, 2022
2022
A rendszer jelenleg nem tudja elvégezni a műveletet. Próbálkozzon újra később.
Cikkek 1–20